资源描述
第十章 算法、统计与概率 第54课 随机事件的概率课时分层训练A组基础达标(建议用时:30分钟)一、填空题1有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向事件“甲向南”与事件“乙向南”是_事件互斥由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件2从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的产品不是一等品”的概率为_035事件A抽到一等品,且P(A)0.65,事件“抽到的产品不是一等品”的概率为P1P(A)10.650.35.3给出下列三个命题,其中正确命题有_个有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;随机事件发生的频率就是这个随机事件发生的概率0错,不一定是10件次品;错,是频率而非概率;错,频率不等于概率,这是两个不同的概念4已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为_. 【导学号:62172300】20组随机数中,恰有两次命中的有5组,因此该运动员三次投篮恰有两次命中的概率为P.5(2017云南昆明3月月考)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为_由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为.6某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是_设a,b分别为甲、乙摸出球的编号由题意,摸球试验共有n6636种不同结果,满足ab的基本事件共有6种,所以摸出编号不同的概率P1.7.如图541所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是_. 【导学号:62172301】图541设被污损的数字为x,则甲(8889909192)90,乙(8383879990x),若甲乙,则x8.若甲乙,则x可以为0,1,2,3,4,5,6,7,故P.8抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(AB)_.将事件AB分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”则C,D互斥,且P(C),P(D),P(AB)P(CD)P(C)P(D).9在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是_AB与C是互斥事件,也是对立事件;BC与D是互斥事件,也是对立事件;AC与BD是互斥事件,但不是对立事件;A与BCD是互斥事件,也是对立事件由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,正确10若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2a,P(B)4a5,则实数a的取值范围是_由题意可知解得a.二、解答题11(2015北京高考节选)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买.商品顾客人数甲乙丙丁1002172003008598(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率解(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的频率为0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为0.3.12某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数012345概率0.10.16xy0.2z(1)若获奖人数不超过2人的概率为0.56,求x的值;(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值. 【导学号:62172302】解记事件“在竞赛中,有k人获奖”为Ak(kN,k5),则事件Ak彼此互斥(1)获奖人数不超过2人的概率为0.56,P(A0)P(A1)P(A2)0.10.16x0.56,解得x0.3.(2)由获奖人数最多4人的概率为0.96,得P(A5)10.960.04,即z0.04.由获奖人数最少3人的概率为0.44,得P(A3)P(A4)P(A5)0.44,即y0.20.040.44,解得y0.2.B组能力提升(建议用时:15分钟)1掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,则一次试验中,事件A发生的概率为_掷一个骰子的试验有6种可能结果依题意P(A),P(B),P()1P(B)1.表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A)P(A)P().2某城市2017年的空气质量状况如表所示:污染指数T3060100110130140概率P其中污染指数T50时,空气质量为优;50T100时,空气质量为良;100T150时,空气质量为轻微污染,则该城市2017年空气质量达到良或优的概率为_由题意可知2017年空气质量达到良或优的概率为P.3某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0.15,P(B)0.12.由表格知,赔付金额大于投保金额即事件AB发生,且A,B互斥,所以P(AB)P(A)P(B)0.150.120.27,故赔付金额大于投保金额的概率为0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.11 000100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.212024(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,因此,由频率估计概率得P(C)0.24.4不透明袋中有3个白球,3个黑球,从中任意摸出3个球,求下列事件发生的概率:(1)摸出1个或2个白球;(2)至少摸出1个白球解将白球分别编号为1,2,3,黑球分别编号为4,5,6,则从6个球中任意摸出3个球,结果如下:三白为(1,2,3);两白一黑为(1,2,4),(1,2,5),(1,2,6),(1,3,4),(1,3,5),(1,3,6),(2,3,4),(2,3,5),(2,3,6);一白两黑为(1,4,5),(1,4,6),(1,5,6),(2,4,5),(2,4,6),(2,5,6),(3,4,5),(3,4,6),(3,5,6);三黑为(4,5,6)共有20种不同的结果从6个球中任取3个,记“恰有1个白球”为事件A1,“恰有2个白球”为事件A2,“恰有3个黑球”为事件B,事件A1与A2为互斥事件,则(1)摸出1个或2个白球的概率P1P(A1A2)P(A1)P(A2).(2)“至少摸出一个白球”的对立事件为“摸出的3个球都是黑球”,所以所求概率P21P(B)1.
展开阅读全文