(江苏专用)高考数学总复习 第九篇 解析几何初步《第57讲 直线与圆、圆与圆的位置关系综合运用 》理(含解析) 苏教版

上传人:文*** 文档编号:239373949 上传时间:2024-01-25 格式:DOC 页数:6 大小:128.50KB
返回 下载 相关 举报
(江苏专用)高考数学总复习 第九篇 解析几何初步《第57讲 直线与圆、圆与圆的位置关系综合运用 》理(含解析) 苏教版_第1页
第1页 / 共6页
(江苏专用)高考数学总复习 第九篇 解析几何初步《第57讲 直线与圆、圆与圆的位置关系综合运用 》理(含解析) 苏教版_第2页
第2页 / 共6页
(江苏专用)高考数学总复习 第九篇 解析几何初步《第57讲 直线与圆、圆与圆的位置关系综合运用 》理(含解析) 苏教版_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
A级基础达标演练(时间:45分钟满分:80分)一、填空题(每小题5分,共35分)1直线yx绕原点按逆时针方向旋转30,则所得直线与圆(x2)2y23的位置关系是_解析由题意可得旋转30后所得直线方程为yx,由圆心到直线距离可知是相切关系答案相切2曲线y与直线yxb有公共点,则实数b的取值范围是_答案3,13已知实数x,y满足则点(x,y)到圆(x2)2(y6)21上点的距离的最小值是_答案414已知直线axbyc0与圆O:x2y21相交于A,B两点,且AB,则_.解析由题可知AOB120,所以|cos 120.答案5已知x,y满足x2y24x6y120,则x2y2最小值为_解析法一点(x,y)在圆(x2)2(y3)21上,故点(x,y)到原点距离的平方即x2y2最小值为(1)2142.法二设圆的参数方程为则x2y2144cos 6sin ,所以x2y2的最小值为14142.答案1426若圆(x3)2(y5)2r2上有且只有两个点到直线4x3y20的距离等于1,则半径r的取值范围为_解析由圆心(3,5)到直线的距离d5,可得4r6.答案(4,6)7已知曲线C:(x1)2y21,点A(2,0)及点B(3,a),从点A观察点B,要使视线不被曲线C挡住,则实数a的取值范围是_解析设过A点的C的切线是yk(x2),即kxy2k0.由1,得k.当x3时,y5k.答案二、解答题(每小题15分,共45分)8已知方程x2y22x4ym0.(1)若此方程表示圆,求实数m的取值范围;(2)若(1)中的圆与直线x2y40相交于M,N两点,且OMON(O为坐标原点),求实数m的值;(3)在(2)的条件下,求以MN为直径的圆的方程解(1)原圆的方程可化为(x1)2(y2)25m,所以m5.(2)设M(x1,y1),N(x2,y2),则x142y1,x242y2,则x1x2168(y1y2)4y1y2.因为OMON,所以x1x2y1y20,所以168(y1y2)5y1y20,由得5y216ym80,所以y1y2,y1y2,代入得m.(3)以MN为直径的圆的方程为(xx1)(xx2)(yy1)(yy2)0,即x2y2(x1x2)x(y1y2)y0.所以所求圆的方程为x2y2xy0.9(2010南京调研)已知以点C(tR,t0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点(1)求证:OAB的面积为定值;(2)设直线y2x4与圆C交于点M,N,若OMON,求圆C的方程(1)证明圆C过原点O,OC2t2.设圆C的方程是(xt)22t2,令x0,得y10,y2;令y0,得x10,x22t.SOABOAOB|2t|4,即OAB的面积为定值(2)解OMON,CMCN,OC垂直平分线段MN.kMN2,kOC,直线OC的方程是y.t,解得t2或t2.当t2时,圆心C的坐标为(2,1),OC,此时圆心C到直线y2x4的距离d,圆C与直线y2x4相交于两点当t2时,圆心C的坐标为(2,1),OC,此时圆心C到直线y2x4的距离d,圆C与直线y2x4不相交,t2不符合题意舍去圆C的方程为(x2)2(y1)25.10如图,已知圆心坐标为(,1)的圆M与x轴及直线yx分别相切于A、B两点,另一圆N与圆M外切,且与x轴及直线yx分别相切于C、D两点(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度解(1)由于M与BOA的两边均相切,故M到OA及OB的距离均为M的半径,则M在BOA的平分线上,同理,N也在BOA的平分线上,即O,M,N三点共线,且OMN为BOA的平分线M的坐标为(,1),M到x轴的距离为1,即M的半径为1,则M的方程为(x)2(y1)21,设N的半径为r,其与x轴的切点为C,连接MA、NC,由RtOAMRtOCN可知,OMONMANC,即r3,则OC3,故N的方程为(x3)2(y3)29.(2)由对称性可知,所求的弦长等于点过A的直线MN的平行线被N截得的弦长,此弦的方程是y(x),即xy0,圆心N到该直线的距离d,则弦长为2.B级综合创新备选(时间:30分钟满分:60分)一、填空题(每小题5分,共30分)1(2011济宁模拟)过点(2,0)且倾斜角为的直线l与圆x2y25相交于M,N两点,则线段MN的长为_解析l方程为xy20,圆心到l距离为d,所以MN22.答案22圆C:x2y22x2y20的圆心到直线3x4y140的距离是_解析圆心为(1,1),它到直线3x4y140的距离d3.答案33若过点A(0,1)的直线l与曲线x2(y3)212有公共点,则直线l的斜率的取值范围为_解析该直线l的方程为ykx1,即kxy10,则由题意,得d2,即k2,解得k或k.答案4若直线mxny4和圆O:x2y24没有公共点,则过点(m,n)的直线与椭圆1的交点个数为_解析由题意可知,圆心O到直线mxny4的距离大于半径,即得m2n24,所以点(m,n)在圆O内,而圆O是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m,n)在椭圆内,因此过点(m,n)的直线与椭圆必有2个交点答案25如果圆C:(xa)2(ya)218上总存在两个点到原点的距离为,则实数a的取值范围是_解析由题意,圆C上总存在两个点到原点的距离,即圆C与以O为圆心,半径为的圆总有两个交点,即两圆相交,所以有|3|CO|3,即2|a|4,解得4a2或2a4.答案(4,2)(2,4)6直线l:axby80与圆C:x2y2axby40(a,b为非零实数)的位置关系是_解析圆的标准方程为224,且40,即a2b216,圆心C到直线axby80的距离dr(r是圆C的半径,则直线与圆相交)答案相交二、填空题(每小题15分,共30分)7(2011盐城调研)如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x5上,圆弧C1的圆心是坐标原点O,半径为13,圆弧C2过点A(29,0)(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足PAPO?若存在,指出有几个这样的点;若不存在,请说明理由;(3)已知直线l:xmy140与曲线C交于E、F两点,当EF33时,求坐标原点O到直线l的距离解(1)圆弧C1所在圆的方程为x2y2169.令x5,解得M(5,12),N(5,12)则线段AM的中垂线的方程为y62(x17)令y0,得圆弧C2所在圆的圆心为O2(14,0),又圆弧C2所在圆的半径为r2291415,所以圆弧C2的方程为(x14)2y2225(x5)(2)假设存在这样的点P(x,y),则由PAPO,得x2y22x290.由解得x70(舍)由解得x0(舍)综上知这样的点P不存在(3)因为EF2r2,EF2r1,所以E、F两点分别在两个圆弧上设点O到直线l的距离为d.因为直线l恒过圆弧C2所在圆的圆心(14,0),所以EF15,即18,解得d2.所以点O到直线l的距离为.8如图,在平面直角坐标系xOy中,已知F1(4,0),F2(4,0),A(0,8),直线yt(0t8)与线段AF1,AF2分别交于点P,Q.(1)当t3时,求以F1,F2为焦点,且过PQ中点的椭圆的标准方程;(2)过点Q作直线QRAF1交F1F2于点R,记PRF1的外接圆为圆C.求证:圆心C在定直线7x4y80上(1)解当t3时,PQ中点为(0,3),所以b3,又椭圆焦点为F1(4,0),F2(4,0),所以c4,a2b2c225,所以椭圆的标准方程为1.(2)证明因为Q在直线AF2:1上,所以Q.由P与Q关于y轴对称,得P,又由QRAF1,得R(4t,0)设PRF1的外接圆方程为x2y2DxEyF0,则有解得所以该圆的圆心C满足748880,即圆心C在直线7x4y80上
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 等级考试


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!