资源描述
移动机器人的导航 主要内容l 1、移动机器人导航的基本知识l 2、移动机器人导航方式l 3、定位技术 l 4、路径规划 l 5、智能导航算法 l 6、自主飞行机器人导航系统设计l 7、产品应用l 8、发展趋势 移动机器人导航l移动机器人的研究起源:20世纪60年代末期。 l导航的概念:移动机器人通过传感器感知环境和自身状态,实现在有障碍物的环境中面向目标的自主运动 导航主要解决的问题l(1)我(机器人)现在何处?l(2)我要往何处走?l(3)我要如何到达该处?导航系统中的定位及其跟踪问题 路径规划问题 研究方向l我们又可以分成以下几个研究方向: 完全已知环境:机器人知道所在工作环境的所有信息,包括目标点的位置,方向,障碍物的位置和方向。 部分已知环境:机器人知道所在工作环境中的部分信息,比如知道一部分障碍物的位置和方向,有另外一部分环境是不知道的。 完全未知环境:机器人完全不知道所在工作环境的信息,只知道目标点的方向和位置,其它障碍物的信息是一点都不知道 。 定位、建图、路径规划 (1) 通过一定的检测手段获取移动机器人在空间中的位置、方向以及所处环境的信息。(2) 用一定的算法对所获信息进行处理并建立环境模型。(3) 寻找一条最优或近似最优的无碰路径,实现移动机器人安全移动的路径规划。 移动机器人导航方式l移动机器人的导航方式很多,有惯性导航、磁导航、视觉导航、基于传感器数据导航、卫星导航等。这些导航方式分别适用于各种不同的环境,包括室内和室外环境,结构化环境与非结构化环境。 l1)惯性导航惯性导航是一种最基本的导航方式。它利用机器人装配的光电编码器和陀螺仪,计算机器人航程,从而推知机器人当前的位置和下一步目的地。 l 2)磁导航(路径地下埋电缆,流过不同频率的电流,来作为路径信息)l 磁导航是目前自动导引车( automated guided vehicle,AGV)的主要导航方式。AGV是移动机器人中的一种,同时,AGV也是自动化物流运输系统柔性生产组织系统的核心关键设备。这种导航方式要在AGV运行路径上,开出深度为 10mm左右,宽5mm左右的沟槽,在其中埋入导线。在导线上通以530 kHz的交变电流,在导线周围产生磁场。AGV上左右对称安装了2只磁传感器用于检测磁场强度,引导车辆沿所埋设的路径行驶。AGV缺乏柔性,在原有路径 上放置一个障碍物,该AGV就无法完成简单的避障动作。 l 3)视觉导航通常,机器人利用装配的摄像机拍摄周围环境的局部图像,然后,通过图像处理技 术(如,特征识别、距离估计等)进行机器人定位和规划下一步的动作。有研究人员利用Fourier变换处理机器人全方位图像,并将关键位置的图像经 Fourier变换所得的数据存储起来作为机器人定位的参考点。以后机器人所拍摄的图像经变换后与之相对照,从而得知机器人当前位置。也有研究人员利用视 觉技术解决计算机器人运动过程中的避碰点,从而实现机器人局部路径规划。 l 4)基于传感器数据导航一般机器人都安装了一些非视觉传感器,如,超声传感器、红外传感器、接触传感器等。利用这些传感器亦可以实现机器人导航。有研究人员将超声数据与图像数据结合,通过事先训练好的神经网络预测障碍物的可能位置,从而使得机器人能够 在动态非结构化环境中实现自主导航。有研究人员将传感器数据作为模糊推理系统的输入,模糊系统将产生较优(针对某事先设定的代价函数而言)的机器人行为动 作。 l5)光反射导航定位l典型的光反射导航定位方法主要是利用激光或红外传感器来测距。激光和红外都是利用光反射技术来进行导航定位的。 l激光全局定位系统一般由激光器旋转机构、反射镜、光电接收装置和数据采集与传输装置等部分组成。工作时,激光经过旋转镜面机构向外发射,当扫描到由后向反 射器构成的合作路标时,反射光经光电接收器件处理作为检测信号,启动数据采集程序读取旋转机构的码盘数据(目标的测量角度值),然后通过通讯传递到上位机 进行数据处理,根据已知路标的位置和检测到的信息,就可以计算出传感器当前在路标坐标系下的位置和方向,从而达到进一步导航定位的目的。 l6)卫星导航GPS全球定位系统是以距离作为基本的观测量,通过对4颗GPS卫星同时进行伪距离测量,计算出用户(接收机)的位置。机器人通过安装卫星信号接收装置,可以实现自身定位,无论其在室内还是在室外。 l GPS概述1 l GPS即全球定位系统(Global Positioning System)。简单地说,这是一个由覆盖全球的24颗卫星组成的卫星系统。这个系统可以保证在任意时刻,地球上任意一点都可以同时观测到4颗卫星,以保证卫星可以采集到该观测点的经纬度和高度,以便实现导航、定位、授时等功能。 l GPS概述2 l 全球定位系统(GPS)是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统 。l GPS全球卫星定位系统由三部分组成:空间部分GPS星座;地面控制部分地面监控系统;用户设备部分GPS信号接收机。 l GPS构成 :空间部分l GPS的空间部分是由24 颗工作卫星组成,它位于距地表20 200km的上空,均匀分布在6个轨道面上(每个轨道面4 颗) ,轨道倾角为55。 l GPS构成 :地面控制部分l 地面控制部分由一个主控站,5 个全球监测站和3 个地面控制站组成。监测站将取得的卫星观测数据传送到主控站。主控站从各监测站收集跟踪数据,计算出卫星的轨道和时钟参数,然后将结果送到3 个地面控制站。地面控制站在每颗卫星运行至上空时,把这些导航数据及主控站指令注入到卫星。 l GPS构成 :用户设备部分l 用户设备部分即GPS 信号接收机。GPS 接收机的结构分为天线单元和接收单元两部分。接收机一般采用机内和机外两种直流电源。设置机内电源的目的在于更换外电源时不中断连续观测。在用机外电源时机内电池自动充电。关机后,机内电池为RAM存储器供电,以防止数据丢失。 定位技术 l定位问题是指移动机器人在移动过程中如何确定自己的位置。就像我们找路一样,必须先知道自己在那里,然后才能规划怎么走 l相对定位技术l相对定位技术成本低,可行性较高,对外部环境无特殊要求,但定位误差会随时间的累积而不断增长,通常采用卡尔曼滤波法加以改进或采用多种传感器信息融合的方法获得较为精确的位姿 l绝对定位技术 l绝对定位系统虽不存在累积误差,但一般比较复杂,成本较高 相对定位技术l (1) 测距法:采用光电编码器、里程计和航向陀螺仪。计算每个采样周期车轮移动路程之和。优点是良好的短期精度、低廉的价格和较高的采样速率。(2) 惯性导航法:采用陀螺仪和加速度计。陀螺仪测量回转速度(角速度),加速度计测量加速度。通过分别对时间进行一次积分和二次积分即可获得偏移的距离和角度。相对定位技术的缺点:累积误差会很严重,不适合长距离或者长时间的定位,可以与绝对定位技术相结合 绝对定位技术: (1) 全球定位系统(GPS)(2) 陆标定位:自然陆标定位和基于人工陆标(超声波发射器、激光反射板等)定位。陆标位置已知。(3) 基于已知地图的定位:地图匹配定位技术。根据自身探测的周围环境信息构建局部地图,然后将局部地图与已知的全局地图进行匹配。关键在于地图模型的建立和匹配算法。 机器人导航定位的原理 机器人采用光电编码器一磁航向传感器组合定位系统,如图1所示。两光电编码器分别装在两后轮轴上,可实时记录两轮的行走距离,车体行走过程中的航向由磁航向传感器测定。车体四周布置一组(12个)超声波传感器,用于探测工作区域内各种障碍T作时,机器人从某一基点B (X。,Y。)出发,沿规划好的轨迹行走。用光电编码器和磁航向传感器测出机器人行走时的实时左右轮转角和航向,并通过数据采集系统记录这些数据。由此,可分别计算出车体左右轮在单位时间内运行的距离S LSR 。车体中心运行的距离为 S=(SL + SR )2 公式2推算出机器人在任意时刻的位置和航向,经与机器人的理论轨迹比较,得到机器人实际位置与理论轨迹的偏离量,通过调整航向来补偿。 路径规划 l移动机器人按照某一性能指标搜索一条从起始状态到目标状态的最优或次最优的无碰路径。静态路径规划l动态路径规划 静态路径规划l (1) 静态路径规划:离线全局路径规划,环境信息完全已知。可视图法(V-Graph)、栅格法(Grids)等。 l可视图法的核心思想是将机器人应该到达的点作为顶点,点的连线作为备选的路径,于是问题就变成了图搜索问题。由于连线(又叫弧)的选取方法不同,也就有了连接 各个障碍物顶点的直线、用障碍物的切线表示弧和做出障碍物顶点的voronoi图的边作为弧的方法,用voronoi方法可以使得路径尽可能的远离障碍 物。栅格法是用累积值表明该栅格存在障碍物的可能性。 动态路径规划 l动态路径规划:在线局部路径规划,环境信息部分或者完全未知。 l 人工势场法(Artificial Potential Field):目标对被规划对象存在吸引力,而障碍物对其有排斥力,引力与斥力的合力作为机器人运动的加速力,从而计算机器人的位置和控制机器人的运动方 向。其缺陷是:存在陷阱区域、在相近的障碍物群中不能识别路径、在障碍物前震荡、在狭窄通道中摆动。模糊逻辑算法( Fuzzy Logic Algorithm):类似人的避障,经验化的方法。基于传感器的信息,采用模糊逻辑算法通过查表得到规划出的信息,完成局部路径规划。 遗传算法( Genetic Algorithm)。 地图映射 l Grid Map(格子地图):就是将周围的环境用一个个格子表示,如果有障碍物,那就是1,如果没,那就是0。但是考虑到传感器信号不是那么精确,现在普遍使用的 是Certainty Grid Map (确定性格子地图),传感器信号返回后并不是直接转换成0,1,而是一个概率值,表示这个gird有障碍物的可能性,如果几次传感器的读数都表面同一个 grid里面有障碍物,则这个grid有障碍物的可能性就很高。这样做的好处是可以避免传感器误差。格子地图的好处是比较精确,对机器人周围的环境表示比 较完整。但是缺点是太耗内存,比较耗计算资源。尤其是一些处理速度和存储容量都有限制的微控制器。 lTopology Map (节点地图):就是将相同特征的环境用一个点来表示。典型的就是中国地图中,上海,北京都是用点表示的。这种地图好处是省资源,由于地图是一副节点图,所以可以很快用一些全局算法做在线的全局规划。缺点是对环境细节描述不够。 l Hybrid (合成地图):综合了格子地图和节点地图。在局部用格子表示,在全局用节点表示。是目前广泛使用的地图表示法。但是这种表示法有个问题就是如何有效的将格子地图和节点地图融合在一起 智能导航算法 l模糊算法l神经网络算法l模糊神经网络l遗传算法l进化神经网络 l(1) 模糊逻辑的导航方法 Wong等提出了一种基于模糊逻辑的导航方法,其思想就是定义3个矢量(机器人前进方向矢量、机器人到目标的方向矢量和机器人到障碍物的方向矢量),根据3个矢量的位置关系来决定构造模糊规则库 l2) 遗传算法整个方案的原理就是利用GP对数据进行预处理,把定量的数据信息转化成关于周围环境的定性信息,感知结束后,采用基于delta规则的模糊规则进行推理,从而实现自主式移动机器人导航。 l(3) 神经网络技术 构建了一个基于自组织神经网络的混杂系统来实现机器人导航,通过传感器数据训练自组织神经网络,机器人关于环境的知识便逐步积累 构造了一个两层的模糊推理系统来进行机器人导航,此系统接收传感器数据作为输入,而直接输出机器人控制信号 l l4、基于行为的导航方式所谓基于行为的导航是把复杂的导航功能分解成很多简单的功能模块单元。每个单元有自己的感知器和执行器,具有特定的感知动作行为。机器人在不同的情景下,激发并执行某个或某些功能模块单元。 l (5) 机器学习 近十几年来,机器学习亦在机器人导航中得到广泛应用。Millan提出了一种联结主义的强化学习方法。机器人通过几次试探,就能得到有效的导航策略。研究表明,引入强化学习方法后,机器人甚至能对尚未被传感器探测到的障碍物做出反应,而且对传感器数据的噪声及外来干扰具有鲁棒性。Arleo等深入讨论了空间学习方法及其在机器人导航中的应用。 自主飞行机器人导航系统设计 自主飞行机器人导航系统设计l自主飞行机器人系统是以微型直升机模型为载体的复杂系统。在该系统中导航系统采集各传感器数据得到机器人当前飞行姿态、空间位置以及相应的监控信息,控制模块依此监控信息按照给定策略计算并发出控制信号,实现飞行机器人的自主控制 l自主飞行机器人系统中,导航系统负责提供自主飞行机器人的飞行状态信息,包括:飞行的空间位置、高度和飞行姿态等。导航系统以ARM 控制器作为运算、控制核心,其硬件组成包括:三个方向传感器、三个转角传感器、罗盘、GPS 信号接收设备、激光高度测量设备等。 l (1) 加速传感器:将自主飞行机器人的飞行空间用直角坐标系定义,则会得到三个方向。在这三个方向上所设置的传感器可以测量直升机在该方向上的加速度值。本自主飞行机器人系统共有三个加速度传感器,数据类型是模拟数据。本系统中采样周期为5ms。l (2) 角度旋转传感器:在自主飞行机器人飞行空间的直角坐标系中,三个方向每个方向都有一个角度旋转传感器。它可以得到各方向上的角加速度,和旋转角度的数值。自主飞行机器人有三个同样的角度旋转传感器,负责各坐标轴上的角加速度和旋转角度的测量。信号类型是A/D 数据,采样周期5ms。 l(3) 罗盘可提供自主飞行机器人绕地坐标系x, y 方向的转角绝对值,结合角度旋转传感器可以测得机器人的飞行方向。罗盘通过串口与ARM 控制器相连。l(4) 激光高度测量设备完成自主飞行机器人离地高度的测量。采用串口与ARM 控制器相连,提供当前飞行高度信息 l (5) GPS 信号接收设备负责接收GPS 信号,并且地面控制设备也有一个GPS 信号接收设备。l同时读取两个设备的GPS 信号,以差分信号对的方法以减小GPS 信号的误差。GPS 接收设l备也是通过串口与ARM 控制器相连。l (6) 主旋翼转速测量仪,负责机器人主旋翼转速的测量。当主旋翼转速恒定时,直升机状态l稳定,可控性好。采用PFM 信号与ARM 控制器相连。 导航系统功能实现(Implementation of navigation system)l导航系统将硬件所获数据经过处理后转交飞行控制系统,对机器人当前的飞行状态和飞行目标进行调整。导航系统在功能上需要解决的难题有: l(1)某些参数无法直接测量得到。并不是所有的参数都可以通过导航系统硬件直接测得的,l对于无法直接测得的参数需要通过其它参数间接测得。l(2)所测得的值需要考虑误差、噪声、延迟等所带来的影响。l(3)传感器、测量设备的传输带宽是一定的,需合理安排采样周期等参数。 应用产品这是一款国外网友DIY的名为Blubber Bot的机器人,利用氦气球漂浮在空中,通过推进器和内置的传感器自动探测并避开周围的障碍物。而且他还可以自动探测光源和手机信号,在光源和手机信号周围“翩翩起舞”,甚至演奏音乐。 用在商场等公共场所一定很吸引眼球 海龙2号”是我国自主研制的水下机器人,高约3.8米,长宽均为1.8米左右,能最大提取250公斤的物品,是我国目前仅有的能在3500米水深、海底高温和复杂地形的特殊环境下开展海洋调查和作业的最高精技术装备,它是国家重大科技专项、目前我国下潜深度最大、功能最强的无人遥控潜水器,简称ROV 机器人程序保障系统著名生产商Evolution Robotics公司向市场推出自己的新产品安装有自动导航系统的机器人ER2。确定现有机器人空间方位的方法是利用超声波或无线电波定位、激光测距仪等,其费用都高达数千美元。而Evolution Robotics公司的机器人只需要价 格为50美元的网络用摄影头和轮式传感器,就能有把握地知道自己在哪里和去哪里。ER2可以作住宅警卫,也可以作向导,举办电视会议,搬运物品,与主人下 象棋或玩其他游戏。 VSLAM (visual simultaneous localization and mapping快速目视定位和 定向)。机器人能自己建立地图(为此需要带它散步一次),同时确定“值得观看的物品”,随后它便能确定方位。轮式传感器可帮助ER2记住路线。值得一提的 是,如果在参观性散步之后在房间里重新布置家具,则机器人会改变原来的地图。Evolution Robotics公司认为,过一段时间还会有自动巡逻和 搬运重物机器人、“智能”吸尘器与地板打蜡机器人陆续上市 发展趋势l移动机器人技术是传感技术、控制技术、信息处理技术、机械加工技术、电子技术、计算机技术等多门技术的结合。因此对于移动机器人的发展也必然建立在这些技术的高速发展之上的。对于移动机器人导航的研究应该从以下几个方面着手 l (1) 先进的传感技术传感器相当于移动机器人的感觉器官,只有先进的传感器技术才能有效的采集环境信息,从而提高导航的效率和准确性。(2) 高效的信息处理技术信息处理主要是指对于传感器采集进来的信息进行处理,包括语音识别与理解技术,图像处理与模式识别技术等。由于目前移动机器人的导航大都采用基于视觉或有视觉参与的导航技术,因此计算机视觉和图像处理技术的水平对于移动机器人导航的发展将起到至关重要的作用。 l (3) 多传感器的信息融合技术多传感器的导航方式是移动机器人导航发展的必然趋势。这种多传感器的信息融合技术充分利用了多个传感器的资源,通过对这些传感器及其观测信息的合理支配和利用,把多个传感器在空间或时间上的冗余或互补信息根据一定的准则进行组合,从而获得对被测对象的一致性解释或描述,因此它不但能够提高导航精度,同时也使整个导航系统具有了较高的鲁棒性。 l (4) 智能方法的发展与完善目前在移动机器人导航中,智能方法的应用是一个重要的发展方向。但目前智能算法在机器人导航中的应用范围却受到了很大局限,如神经网络应用往往局限在环境的建模和认知上,例如机器人地图构建。同时由于目前在导航过程中主要采用前馈网络,需要教师信号进行训练,因此难于实现在线应用;模糊逻辑应用于复杂未知动态环境中,模糊规则很难提取,导航的效果也不理想。因此在移动机器人导航中,智能方法还有极大的发展空间 参考文献l蔡自兴. 智能机器人技术 2009.6l芮延年 机器人技术及其应用 2008.7 l l 谢谢
展开阅读全文