静定平面桁架

上传人:w****2 文档编号:22360197 上传时间:2021-05-25 格式:PPT 页数:28 大小:786KB
返回 下载 相关 举报
静定平面桁架_第1页
第1页 / 共28页
静定平面桁架_第2页
第2页 / 共28页
静定平面桁架_第3页
第3页 / 共28页
点击查看更多>>
资源描述
第 五 章 静 定 桁 架 5-1 、 概 述桁 架 -直 杆 铰 接 体 系 .荷 载 只 在 结 点 作 用 , 所 有 杆 均 为 只 有 轴 力 的 二 力 杆1.桁 架 的 计 算 简 图 2.桁 架 的 分 类按 几 何 组 成 分 类 : 简 单 桁 架 在 基 础 或 一 个 铰 结 三 角 形 上 依 次 加 二 元 体 构 成 的 联 合 桁 架 由 简 单 桁 架 按 基 本 组 成 规 则 构 成 复 杂 桁 架 非 上 述 两 种 方 式 组 成 的 静 定 桁 架简 单 桁 架简 单 桁 架 联 合 桁 架复 杂 桁 架 5-2 、 结 点 法 取 隔 离 体 时 ,每 个 隔 离 体 只 包 含 一 个 结 点 的 方 法 . 隔 离 体 上 的 力 是 平 面 汇 交 力 系 ,只 有 两 个 独 立 的 平 衡 方 程可 以 利 用 ,固 一 般 应 先 截 取 只 包 含 两 个 未 知 轴 力 杆 件 的 结 点 .2/P P P P P P 2/PA F ECD BG I JH a6 LKa3 AYAX BYPYA 30AX PYB 31.求 支 座 反 力 其 它 杆 件 轴 力 求法 类 似 . 求 出 所 有 轴 力 后 ,应 把 轴 力 标 在 杆 件 旁 . 2/P P P P P P 2/PA F ECD BG I JHa6 LKa3 AYAX BYPYA 30AX PYB 31.求 支 座 反 力2.取 结 点 A C CENCDNCANAYA ACNADN2/P DCND DENDFNDAN P 2/25,02/32/2,0 PNPPNF ADADy 2/5,02/2,0 PNNNF ACACADx 3.取 结 点 C 2/5,0 PNNN CACECD 4.取 结 点 D PPNNF DADF 222/2,0 2/2,0 PNF DE 结 点 法 列 力 矩 方 程2/P P P P P P 2/PA F ECD BG I JHa6 LKa3 AYAX BYPYA 30AX PYB 3取 结 点 A AYA ACNADN2/P25020 /,)/(, PNaPYaN M ACAAC D 2252 /PYaaN ADAD AY A ACNADN2/P ADXADY xl yll ADX ADYADN yADxADAD lYlXlN 25020 /,)/( , PYaPYaY M ADAAD C 结 点 法 列 力 矩 方 程2/P P P P P P 2/PA F ECD BG I JHa6 LKa3 AYAX BYPYA 30AX PYB 3取 结 点 D PX aYaPaX MDF DADF E 2 022 0 , PXaaN DFDF 222 xl yll DFX DFYDFN yDFxDFDF lYlXlN DCND DENDFNDAN P DCND DEN DFNDAN P FEDFY DFXDAX DAYA 对 于 简 单 桁 架 ,若 与 组 成 顺 序 相 反 依次 截 取 结 点 ,可 保 证 求 解 过 程 中 一 个 方 程中 只 含 一 个 未 知 数 .结 点 单 杆 :利 用 结 点 的 一 个 平 衡 方 程 可 求 出 内 力 的 杆 件单 杆单 杆 零 杆 :轴 力 为 零 的 杆0 0 00 P例 :试 指 出 零 杆 PP P练 习 :试 指 出 零 杆受 力 分 析 时 可 以 去 掉 零 杆 ,是 否 说 该 杆 在 结 构 中 是 可有 可 无 的 ? 0 0 0 0P练 习 :试 指 出 零 杆P PP P PPP PPP P PPPP 5-3 、 截 面 法 有 些 情 况 下 ,用 结 点 法 求 解 不 方 便 ,如 :截 面 法 :隔 离 体 包 含 不 少 于 两 个 结 点 . 隔 离 体 上 的 力 是 一 个 平 面 任 意 力 系 ,可 列 出 三 个 独 立 的平 衡 方 程 .取 隔 离 体 时 一 般 切 断 的 未 知 轴 力 的 杆 件 不 多 余 三 根 . 5-3 、 截 面 法 P P 123 a5 3/a 3/2aA C D BE GHF IJ解 : 1.求 支 座 反 力AY BY2.作 1-1截 面 ,取 右 部 作 隔 离 体 )(5/3),(5/7 PYPY BA 5/23,0 2 PNF y BYHDN 1N2N5/6,0 1 PNMD D AY P 3N3.作 2-2截 面 ,取 左 部 作 隔 离 体 50230 33 /, PYaYaPaYM AO 22 3X3Y DO A Ca2 a32 /a 313 /aPN 10133 用 截 面 切 开 后 , 通 过 一 个 方 程 可 求 出 内 力 的 杆 .截 面 上 被 切 断 的 未 知 轴 力 的杆 件 只 有 三 个 ,三 杆 均 为 单 杆 .截 面 上 被 切 断 的 未 知 轴 力 的杆 件 除 一 个 外 交 于 一 点 ,该 杆为 单 杆 . 截 面 法 计 算 步 骤 :1.求 反 力 ; 2.判 断 零 杆 ; 3.合 理 选 择 截 面 , 使 待 求 内 力 的 杆 为 单 杆 ; 4.列 方 程 求 内 力 5-4 、 结 点 法 与 截 面 法 的 联 合 应 用 P P 1N4N2N 3N P1N 5N2N P P P P P2 134 5P P 2N 3N 0Y 对 称 性 的 利 用 对 称 结 构 :几 何 形 状 和 支 座 对 某 轴 对 称 的 结 构 .对 称 荷 载 :作 用 在 对 称 结 构 对 称 轴 两 侧 ,大 小 相 等 ,方 向 和 作 用 点 对 称 的 荷 载反 对 称 荷 载 :作 用 在 对 称 结 构 对 称 轴 两 侧 ,大 小 相 等 ,作 用 点 对 称 ,方 向 反 对 称 的 荷 载 PP 对 称 荷 载 PP 反 对 称 荷 载 对 称 性 的 利 用 对 称 结 构 的 受 力 特 点 :在 对 称 荷 载 作 用 下 内 力 是 对 称 的 , 在 反 对 称 荷 载 作 用 下 内 力 是 反 对 称 的 .P P0 P PEA C D B对 称 平 衡 0 CDCE NNP PEA C D B 反 对 称E D平 衡E D 0EDN 对 称 性 的 利 用 例 :试 求 图 示 桁 架 A支 座 反 力 .0 对 称 荷 载P/2 P/2反 对 称 荷载P/2 P/2a10PA a2 0 )(10/3 0325,0 PY aPaYMA AC反 反 对AY 反AY)(6/ 023,0 PY aPaYMA AB对 对 00B C0 )(15/7 PYYY AA 反对AY 对 称 性 的 利 用 例 :试 求 图 示 桁 架 各 杆 内 力 .PP P/2P/2 P/2P/2P/2 P/2 P/2P/2 一 、 组 合 结 构 的 受 力 特 点先 算 二 力 杆 , 后 算 弯 曲 杆由 两 类 构 件 组 成 : 弯 曲 杆 (梁 式 杆 ) 二 力 杆 (桁 架 杆 );二 、 组 合 结 构 的 受 力 分 析 5-5 静 定 组 合 结 构(Statically determinate composite structures) 例 :作 图 示 结 构 内 力 图 aaa 2/a 2/aPA C D BG FE3/2PYA 3/PYB 0AX D BG F 3/PFENGX GY 3/,2/,2/ PYPXPN GGFE FFEN FDN FBN ,2/2 ,2/PN PN FBFDECNEEAN EFN ,2/2 ,2/PN PNEAEC2/P6/P 6/P3/P2/P 2/P 3/P 2/P 2/P6/Pl 6/PlM QN 2/P2/P 2/P 2/2P2/2P 2/P 2/P2/PP3/2P 3/P 3/P 3/P2/2P 2/2P+ 一 3/P 3/P6/P 一 .静 定 结 构 基 本 性 质满 足 全 部 平 衡 条 件 的 解 答 是 静 定 结 构 的 唯 一 解 答证 明 的 思 路 : 静 定 结 构 是 无 多 余 联 系 的 几 何 不 变 体 系 , 用 刚 体虚 位 移 原 理 求 反 力 或 内 力 , 解 除 约 束 以 “ 力 ” 代 替 后 ,体 系 成 为 单 自 由 度 系 统 , 一 定 能 发 生 与 需 求 “ 力 ” 对应 的 虚 位 移 , 因 此 体 系 平 衡 时 由 外 力 的 总 虚 功 等 于零 一 定 可 以 求 得 “ 力 ” 的 唯 一 解 答 。 2-6 静 定 结 构 总 论 Statically determinate structures general introduction 1 2 021 MRP 静 定 结 构 满 足 全 部 平 衡条 件 的 解 答 是 唯 一 的 . 超 静 定 结 构 满 足 全 部 平衡 条 件 的 解 答 不 是 唯 一 的 . 二 .静 定 结 构 派 生 性 质1. 支 座 微 小 位 移 、 温 度 改 变 不 产 生 反 力 和 内 力Ct 二 .静 定 结 构 派 生 性 质1. 支 座 微 小 位 移 、 温 度 改 变 不 产 生 反 力 和 内 力2. 若 取 出 的 结 构 部 分 ( 不 管 其 可 变 性 ) 能 够 平 衡 外 荷 载 ,则 其 他 部 分 将 不 受 力P P 二 .静 定 结 构 派 生 性 质1. 支 座 微 小 位 移 、 温 度 改 变 不 产 生 反 力 和 内 力2. 若 取 出 的 结 构 部 分 ( 不 管 其 可 变 性 ) 能 够 平 衡 外 荷 载 ,则 其 他 部 分 将 不 受 力3. 在 结 构 某 几 何 不 变 部 分 上 荷 载 做 等 效 变 换 时 , 荷 载 变化 部 分 之 外 的 反 力 、 内 力 不 变ql 2/l 2/l q 二 .静 定 结 构 派 生 性 质1. 支 座 微 小 位 移 、 温 度 改 变 不 产 生 反 力 和 内 力2. 若 取 出 的 结 构 部 分 ( 不 管 其 可 变 性 ) 能 够 平 衡 外 荷 载 ,则 其 他 部 分 将 不 受 力3. 在 结 构 某 几 何 不 变 部 分 上 荷 载 做 等 效 变 换 时 , 荷 载 变化 部 分 之 外 的 反 力 、 内 力 不 变4. 结 构 某 几 何 不 变 部 分 , 在 保 持 与 结 构 其 他 部 分 连 接 方式 不 变 的 前 提 下 , 用 另 一 方 式 组 成 的 不 变 体 代 替 , 其他 部 分 的 受 力 情 况 不 变P P P P 作 业 : 5-7、 5-8任 选 一 题5-20题
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!