高中数学 第一章 计数原理 1_1_1 分类加法计数原理与分步乘法计数原理及其简单应用课件 新人教A版选修2-3

上传人:san****019 文档编号:21979952 上传时间:2021-05-17 格式:PPT 页数:30 大小:13.58MB
返回 下载 相关 举报
高中数学 第一章 计数原理 1_1_1 分类加法计数原理与分步乘法计数原理及其简单应用课件 新人教A版选修2-3_第1页
第1页 / 共30页
高中数学 第一章 计数原理 1_1_1 分类加法计数原理与分步乘法计数原理及其简单应用课件 新人教A版选修2-3_第2页
第2页 / 共30页
高中数学 第一章 计数原理 1_1_1 分类加法计数原理与分步乘法计数原理及其简单应用课件 新人教A版选修2-3_第3页
第3页 / 共30页
点击查看更多>>
资源描述
第 一 章 计数原理 11分类加法计数原理与分步乘法计数原理11.1分类加法计数原理与分步乘法计数原理及其简单应用 自主学习 新知突破 1理解分类加法计数原理与分步乘法计数原理2会利用两个基本原理分析和解决一些简单的实际问题 2013年3月3日政协十一届三次会议在北京举行,某政协委员3月2日要从泉城济南前往北京参加会议他有两类快捷途径:一是乘坐飞机,二是乘坐动车组假如这天飞机有3个航班可乘,动车组有4个班次可乘 问题此委员这一天从济南到北京共有多少种快捷途径?提示347.此委员这一天从济南到北京共有7种快捷途径 1完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法,那么完成这件事共有N_种不同的方法2如果完成一件事情有n类不同方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,在第n类方法中有mn种不同的方法,则完成这件事情共有N _ 种不同的方法分类加法计数原理mnm1m2mn 1完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事情共有N_种不同的方法2如果完成一件事情需要n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,则完成这件事情共有N _种不同方法分步乘法计数原理m1m2mnmn 关于分类加法计数原理与分步乘法计数原理的区别与联系分类加法计数原理分步乘法计数原理关键词分类分步本质每类方法都能独立地完成这件事,它是独立的、一次性的且每次得到的是最后结果,只需一种方法就可完成这件事每一步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事各类(步)的关系各类办法之间是互斥的、并列的、独立的,即“分类互斥”各步之间是关联的、独立的,“关联”确保连续性,“独立”确保不重复,即“分步互依” 1现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()A7 B12C64 D81解析:要完成长裤与上衣配成一套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法故共有4312种不同的配法答案:B 2已知集合M1,2,3,N4,5,6,7,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()A18个B17个C16个D10 解析:分两类:第1类,M中的元素作横坐标,N中的元素作纵坐标,则有339个在第一、二象限内的点;第2类,N中的元素作横坐标,M中的元素作纵坐标,则有428个在第一、二象限内的点由分类加法计数原理,共有9817个点在第一、二象限内答案:B 3从集合0,1,2,3,4,5,6中任取两个互不相等的数a,b组成复数abi,其中虚数有_解析:第1步取b的数,有6种方法;第2步取a的数,也有6种方法根据分步乘法计数原理,共有6636种方法答案:36 4有不同的红球8个,不同的白球7个(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?解析:(1)由分类加法计数原理得,从中任取一个球共有8715种取法(2)由分步乘法计数原理得,从中任取两个不同颜色的球共有8756种取法. 合作探究 课堂互动 分类加法计数原理新华中学高一有优秀班干部5人,高二有优秀班干部7人,高三有优秀班干部8人,现在学校组织他们去参加旅游活动,需要推选一人为总负责人,有多少种不同的选法? 思路点拨 方法一(定义法):由于要从三个年级的优秀班干部中选出一人,故可分为三类:第一类从高一的5名优秀班干部中选取一人,有5种选法;第二类从高二的7名优秀班干部中选取一人,有7种选法;第三类从高三的8名优秀班干部中选取一人,有8种选法又根据分类加法计数原理知,共有57820种不同的选法 方法二(枚举法):因为只取一人,这样设三个年级的优秀班干部分别为A1,A2,A3,A4,A5;B1,B2,B3,B4,B5,B6,B7;C1,C2,C3,C4,C5,C6,C7,C8,从以上20种情况中选一人有20种选法方法三(表格法):因为推选1人,从三个年级中选取,列表如下:所以共有57820种选法年级所选优秀班干部的具体情况高一A 1,A2,A3,A4,A5高二B1,B2,B3,B4,B5,B6,B7高三C1,C2,C3,C4,C5,C6,C7,C8 规律方法利用分类加法计数原理解题的步骤和原则 1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解析:根据题意,将十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个由分类加法计数原理知:符合题意的两位数共有8765432136个 分步乘法计数原理从3,2,1,0,1,2,3中,任取3个不同的数作为抛物线方程yax2bxc的系数,如果抛物线经过原点,且顶点在第一象限,则这样的抛物线共有多少条? 思路点拨 规律方法利用分步乘法计数原理的步骤: 2要安排一份5天的值班表,每天有一个人值班,共有5个人,每个人值多天或不值班,但相邻两天不准由同一个人值班,此值班表共有多少种不同的排法?解析:先排第一天,可排5人中任一人,有5种排法;再排第二天,此时不能排第一天已排的人,有4种排法;再排第三天,此时不能排第二天已排的人,有4种排法;同理,第四、五天各有4种排法由分步乘法计数原理可得值班表不同的排法共有:N544441 280种 用0到6这7个数字,可以能组成多少个没有重复数字的四位偶数?【错解一】分4步进行:第1步,排个位,在0,2,4,6中选一个有4种方法;第2步,排十位,有6种方法;第3步,排百位有5种方法;第4步,排千位有4种方法,共有方法种数4654480. 【错解二】考虑到首位不能排数字0,分4步进行:第1步,排千位,在1,2,3,4,5,6中选1个,有6种方法;第2步,排个位,在0,2,4,6中选1个,有4种方法;第3步,排十位,在余下的5个数字中选1个,有5种方法;第4步,排百位,在余下的4个数字中选1个,有4种方法;共有6454480种方法 提示错解一忽视数字0不能在首位的约束,按此排法有可能为“0134”这种不符合要求的情况错解二忽视了题目“无重复数字的四位数”的约束,按此排法有可能为“2032”,不符合条件若先排首位,应考虑排的是1,3,5还是2,4,6,因它直接关系到第2步排个位的选取;若先排个位,应考虑是否排0,因为它关系到首位的选排 【正解】分两类:第1类,首位取奇数数字(可取1,3,5中任一个),则末位数字可取0,2,4,6中任一个,而百位数字不能取与这两个数字重复的数字,十位则不能取与这三个数字重复的数字,故共有3454240种取法第2类,首位取2,4,6中某个偶数数字,如2时,则末位只能取0,4,6中任一个,百位又不能取与上述重复的数字,十位不能取与这三个数字重复的数字,故共有3354180种取法故共有240180420个无重复数字的四位偶数.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!