高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课件 新人教A版选修4-5

上传人:san****019 文档编号:21979352 上传时间:2021-05-17 格式:PPT 页数:34 大小:13.46MB
返回 下载 相关 举报
高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课件 新人教A版选修4-5_第1页
第1页 / 共34页
高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课件 新人教A版选修4-5_第2页
第2页 / 共34页
高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课件 新人教A版选修4-5_第3页
第3页 / 共34页
点击查看更多>>
资源描述
第 二 讲 证明不等式的基本方法 一比较法综合法与分析法 1.理解比较法、综合法、分析法证明不等式的原理和思维特点2.掌握比较法、综合法、分析法证明简单不等式的方法和步骤3.能综合运用综合法、分析法证明不等式 1.比较法、综合法、分析法证明不等式(重点)2.常与函数、数列及三角函数相结合,考查综合论证不等式的思维能力(重点、难点)3.分析法证明的步骤(易混点) 预习学案 0 ab0,则()A(x1)3(x1)2B(x1)3(x1)2C(x1)30,x(x 1)20,(x 1)3(x 1)2.答案:A 课堂学案 求证:(1)a2b22(ab1);(2)若abc,则bc2ca2ab2b2cc2aa2b.思路点拨由于两边都是低次的整式,用作差法作差比较法证明不等式 1已知abc,求证:a2bb2cc2ab ab0,因此,证明ab,可以转化为证明与之等价的ab0,这种证明方法即为作差法,其一般的证明步骤为:作差:考查不等式左、右两边构成的等式,将其看作一个整体;比较法证明不等式 变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的乘积,或变形为一个或几个平方的和等;判断符号:根据已知条件,结合上述变形结果,判断不等式两边差的符号;结论:肯定所求证的不等式成立其中,比较法证明不等式的关键在变形,而变形的技巧在于将差式进行重新组合、合理搭配,目的是有利于判断差式的符号该法尤其适用于具有多项式结构特征的不等式的证明 1证明不等式可以利用某些已经证明过的不等式(如定理以及它们的推论),从已知条件出发,再运用不等式的性质推导出所要求证的不等式,这种证明方法叫做综合法2综合法的思维特点是:“由因导果”,即从“已知”逐步推向“结论”综合法 1证明不等式时,从欲证的不等式入手,利用不等式的性质、定理及已知附加条件,寻找使欲证不等式成立的条件,直至追溯到不等式的已知条件其中,推理的每一步必须是前一步的充分条件,这种证明方法叫做分析法2分析法的思维特点是:“执果索因”,即从欲证的不等式出发,逐步逆求不等式成立的充分条件,最后向已知靠拢(或向已证定理及它们的推论靠拢)分析法 综合法与分析法的比较方法证明的起始步骤求证过程求证目标证题方向综合法基本不等式或已经证明过的不等式实施一系列的推出或等价变换要求证的结论由因导果分析法要求证的不等式寻求结论成立的充分条件,并证明这个充分条件成立所需条件全都成立执果索因
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!