资源描述
第1 9课时矩形、菱形、正方形 考 点 梳 理 自 主 测 试考 点 一矩 形 的 性 质 与 判 定1.定 义有一个角是直角的平行四边形是矩形.2.性 质(1)矩形的对边平行且相等;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴,它的对称中心是对角线的交点.3.判 定(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形; (3)对角线相等的平行四边形是矩形. 考 点 梳 理 自 主 测 试考 点 二菱 形 的 性 质 与 判 定1.定 义一组邻边相等的平行四边形叫做菱形.2.性 质(1)菱形的对边平行,四边都相等;(2)菱形的对角相等;(3)菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角.3.判 定(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边都相等的四边形是菱形.4.菱 形 的 面 积 菱形的面积等于两条对角线乘积的一半,即S菱形= ab.(其中a,b为菱形对角线长) 考 点 梳 理 自 主 测 试考 点 三正 方 形 的 性 质 与 判 定1.定 义一组邻边相等的矩形叫做正方形.2.性 质(1)正方形的四条边都相等,四个角都是直角;(2)正方形的对角线相等,且互相垂直平分,每条对角线平分一组对角;(3)正方形是轴对称图形,两条对角线所在直线以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心. 考 点 梳 理 自 主 测 试3.判 定(1)一组邻边相等并且有一个角是直角的平行四边形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线互相垂直的矩形是正方形;(4)有一个角是直角的菱形是正方形;(5)对角线相等的菱形是正方形.4.正方形的面积公式:S=a 2(a为边长)或S= l2.(l为对角线的长) 考 点 梳 理 自 主 测 试1.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当 ABD= CBD时,四边形ABCD是矩形答 案 :D2.如图,在菱形ABCD中, B=60,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15C.16 D.17 答 案 :C 考 点 梳 理 自 主 测 试3.下列命题是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形答 案 :C4.如图,在正方形ABCD中,AD=1.将ABD绕点B顺时针旋转45得到ABD,此时AD与CD交于点E,则DE的长度为. 命 题 点 1 命 题 点 2 命 题 点 3命 题 点 1矩 形 的 性 质 与 判 定【 例 1】 如图,在ABC中,AB=AC,AD,AE分别是 BAC和 BAC外角的平分线,BE AE.(1)求证:DA AE;(2)试判断AB与DE是否相等?并证明你的结论.分 析 :第(1)题利用邻补角的角平分线互相垂直易证;在第(2)题中,AB与DE是四边形ADBE的对角线,可考虑利用矩形的判定,证明 四边形ADBE是矩形即可. 命 题 点 1 命 题 点 2 命 题 点 3(1)证 明 : AD,AE分别平分 BAC, BAF, (2)解 :AB=DE.理由: AB=AC,AD平分 BAC, AD BC. ADB=90. BE AE, AEB=90. DAE=90,四边形ADBE是矩形. AB=DE. 命 题 点 1 命 题 点 2 命 题 点 3 命 题 点 1 命 题 点 2 命 题 点 3命 题 点 2菱 形 的 性 质 与 判 定【 例 2】 如图,在 ABCD中,AE平分 BAD,交BC于点E,BF平分 ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6, ABC=60,求tan ADP的值.(1)证 明 : BF平分 ABC, ABF= EBF. AD BC, AFB= EBF. AFB= ABF. AB=AF.同理,AB=BE. AF=BE.又AF BE,四边形ABEF是平行四边形. AB=AF,四边形ABEF是菱形. 命 题 点 1 命 题 点 2 命 题 点 3(2)解 :过点P作PG AD于点G,如图.四边形ABEF是菱形, ABC=60,ABE是等边三角形. 命 题 点 1 命 题 点 2 命 题 点 3 命 题 点 1 命 题 点 2 命 题 点 3变 式 训 练如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5, AC=6.过D点作DE AC交BC的延长线于点E.(1)求BDE的周长;(2)点P为线段BC上的点,连接PO,并延长交AD于点Q,求证:BP=DQ. 命 题 点 1 命 题 点 2 命 题 点 3(1)解 :因为四边形ABCD为菱形,所以BE AD.又AC DE,所以四边形ACED为平行四边形,则有AB=AD=BC=CE=5,所以BE=BC+CE=10,AC=DE=6.(2)证 明 :因为四边形ABCD为菱形,所以OB=OD,BE AD,则 DBC= ADB.又 BOP= DOQ,所以BOPDOQ, 故有BP=DQ. 命 题 点 1 命 题 点 2 命 题 点 3命 题 点 3正 方 形 的 性 质 与 判 定【 例 3】 如图,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论; (2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图的方式拼接成一个四边形.若正方形ABCD的边长为3 cm, HA=EB=FC=GD=1 cm,则图中阴影部分的面积为cm2. 命 题 点 1 命 题 点 2 命 题 点 3分 析 :根据题目的条件,可先证AEH,BFE,CGF,DHG四个三角形全等,证得四边形EFGH的四边相等,然后由全等再证一个角是直角.解 :(1)四边形EFGH是正方形.证明:四边形ABCD是正方形, A= B= C= D=90,AB=BC=CD=DA. HA=EB=FC=GD, AE=BF=CG=DH.AEHBFECGFDHG. EF=FG=GH=HE.四边形EFGH是菱形.由DHGAEH,知 DHG= AEH. AEH+ AHE=90, DHG+ AHE=90. GHE=90.菱形EFGH是正方形.(2)1 命 题 点 1 命 题 点 2 命 题 点 3
展开阅读全文