电动汽车非接触式充电系统设计探讨

上传人:冷*** 文档编号:19691945 上传时间:2021-01-12 格式:DOCX 页数:5 大小:14.09KB
返回 下载 相关 举报
电动汽车非接触式充电系统设计探讨_第1页
第1页 / 共5页
电动汽车非接触式充电系统设计探讨_第2页
第2页 / 共5页
电动汽车非接触式充电系统设计探讨_第3页
第3页 / 共5页
点击查看更多>>
资源描述
电动汽车非接触式充电系统设计探讨 摘要:通过了解电动汽车发展的现状及电动汽车非接触式充电模式,介绍了电动汽车非接触式充电系统架构,阐述了电动汽车非接触式充电系统互感等效模型,分析了一种电动汽车非接触式充电系统的组成及优势,旨在为促进电动汽车优化发展奠定坚实基础。关键词:电动汽车;非接触式;充电;系统;设计前言电动汽车动力电池为支持,噪音低、能源清洁、场地限制小、可实现接近燃油汽车的续航及最高时速1。电动汽车充电方式分为导线充电及无线能量传输。无线充电(WPT,wirelessPowerTransmission)以耦合电磁场为媒介,完成能量传输2。无线充电与优化导线充电中的机械磨损、触电老化现象,可实现一对多充电,实现边驾驶边充电;。1无线充电传输组成电动汽车无线充电系统由信号源、功率放大电路、同步电路、发射线圈、接收线圈、整流电路及负载组成:其中,信号源及功率放大电路发出稳定交流电,在发射线圈固定位置安装接收线圈,确保接收、发射线圈共振频率相同3。两线圈在固定频率下耦合共振,产生高频交变磁场,能量传递给接收线圈,整流电路将接收线圈高频交流电转化为直流电,为汽车充电。2电动汽车非接触式充电系统研制及系统架构分析2.1电动汽车非接触式充电系统拓扑结构当下,单纯电动驱动汽车体积大、寿命低,自身结构还不完善,随市场应用前景广阔,但技术上还存在一定难题:充电慢、成本高4。该结构现状必然影响电动汽车的推广使用,徒增运行维护成本。下文提出即时模式;,分析电动汽车非接触式充电系统设计。2.1.1非接触送电电容储存电能无法维持汽车运动后,系统送电,电网侧为电动汽车送电。此时,送电断开关谐振逆变,电能以互感耦合方式传递给汽车接收端,接收端以PWM整流,稳定交流电,转化为直流电,为电动汽车供电,保证其续航稳定。2.1.2非接触馈电电动汽车下坡、制动、车载发电设备电量充足、盈余下,为确保系统稳定运行,需将电能以系统为媒介馈电,电动汽车为送电端,电网为接收端。电能以的互感耦合集中到接收端,接收端以PWM将电流转化为直流电,为电网运行奠定基础。其中,非接触馈电功能可降低电动汽车驱动运行中,受电力过分盈余引起的运行隐患。2.2电动汽车非接触式充电系统等效模型分析在电动汽车上,可以利用车载新能源发电设备,为电动汽车运行提供动力支持,降低其对非接触送电电源的实际需求,进而发挥分布式电源的最大化作用。该拓扑结构支持下的电动汽车,可具备电能回馈功能,对于电动汽车充电过于盈余的情况,通过电能回馈,将不合理的电能及时输送出去,降低电动汽车驱动系统实际运行风险,确保电动汽车稳定运行。由上述模型可得,模型设计中引入M1、M2及δ,可实现对系统的可靠性控制。3控制系统电路设计3.1STM32最小系统对电动汽车非接触式充电系统设计,应优化系统设计,确保充电稳定性及安全性。STM32最小系统属于先进控制系统,其对控制环境要求严格,在电路中,还需配置CAN标准通信和汽车通信,以STM32最小系统为支持,实现对电路的科学控制。横向比较控制器,采用新型的系统芯片为系统设计核心,合理封装,提高一般工作效率。此外,配置先进转换器及控制器,外设配置以ADC、SPI、I2C、USART及定时器为支持,实现充电在线调控。3.2电源设计电源均衡稳定对充电系统稳定有直接影响,采用STM32芯片支持,电源设计为2-3.6V,可选择不同供电方式:(1)USB供电,电流约为500mA;(2)外部电源供电;(3)以JLinkV8供电。3.3JTAG接口电路设计采用JTAG辅助设计,具有良好稳定性,JTAG协议可在线编程,无需预先变成,再安装到电路板中,直接将芯片安装到电路板上,针对需求编程,提高了工作效率。JTAG结构电路设计中,以20针调试接口为支持设计。3.4电压检测电路设计电动汽车使用的电源电池具有特殊性,其容量较大,关系到电动汽车运行的稳定性,因此,要在充电稳定性及充电安全性上优化设计。电池充电时,需考虑到充电电压及充电电流的实时监测,发现异常及时报警。为确保充电状态在检测时,获取有效结果,对主电路输出电压检测,选择霍尔电压传感器CHV-25P进行检测。设计中,STM32中ADC模块输入0.3V输入范围(仅限参考),将裕量变化考虑在内,在基础3V上限上,乘以约80%的数,获取的设计输入最大值,得到2.5V。原信号经过处理后进入STM32对应ADCCINA1端口:经电压跟随器,缓冲、隔离、后级滤波,进入差动输入运算系统,获取0-2.5V电压,之后将信号经钳位处理后,送至STM32ADCCINA1端口(钳位电路可稳定ADC端口电压,控制电压处于0.3.3V范围)。3.5输出电流检测对主电路输出电流检测,以HBC20LSO检测,但是,该工具不直接检测,其以传感器为支持,以被测电流穿过传感器中心孔,间接获取电压值。电流信号不直接供给给处理器,需经过一系列调试后,再供给。3.6控制系统软件设计软件也是电动汽车非接触式充电系统设计重要组成之一,在控制系统当中,软件设计起到对整体系统的引导、指导性作用,可指导系统按照规范性步骤按部就班;的执行,维护主程序稳定。程序设计中,主程序对系统工作指挥。考虑到非接触性系统的特点,在编程中,需对各个对应的寄存器对英国配置,采取模块化编程方式,注重编程整体结构的稳定性,充分发挥各个模块的最大化功能,对模块变量的参数、AD采样、PWM控制等优化管理。4总结文章对电动汽车非接触式充电系统设计分析,将非接触式充电系统拓扑结构及系统等效模型设计分析,对其控制系统电路设计分析。通过实现电动汽车和智能电网的交互,将多余电能输送给电网,减低电网供电压力,同时优化电动汽车能源结构,可有效减少对不可再生能源的依赖。分析电动汽车非接触式充电系统,应注重对电路拓扑及磁路优化设计,规划好无线电能传输及地车底盘、地面之间的距离,采用新型磁材料,感受汽车实际位置,提高充电效率。通过分析全新自动充电技术的,为电动汽车推广提供技术支持,可减轻电网压力,减少污染。参考文献1杨晨.电动汽车非接触式充电系统设计J.工业设计,2017(11):136-137.2尹静文,苑璐,徐坤,等.基于RFID的电动汽车充电桩结算系统设计J.周口师范学院学报,2018,35(2):41-44.3高巧玲,秦灿华,余娟.感应耦合电动汽车无线充电的关键因素分析J.电子世界,2017(22):155-156.4翟娟.电动汽车充电桩充电管理系统设计J.内燃机与配件,2018(1):194-195.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!