生物化学:第5章 糖代谢

上传人:努力****83 文档编号:192493082 上传时间:2023-03-07 格式:PPT 页数:144 大小:3.69MB
返回 下载 相关 举报
生物化学:第5章 糖代谢_第1页
第1页 / 共144页
生物化学:第5章 糖代谢_第2页
第2页 / 共144页
生物化学:第5章 糖代谢_第3页
第3页 / 共144页
点击查看更多>>
资源描述
糖 代 谢Metabolism of Carbohydrates糖代谢糖代谢生物氧化生物氧化脂类代谢脂类代谢氨基酸代谢氨基酸代谢核苷酸代谢核苷酸代谢物质代谢的联系与调节物质代谢的联系与调节第二篇第二篇 物质代谢与调节物质代谢与调节糖糖(carbohydrates)即碳水化合物,其化即碳水化合物,其化学本质为多羟醛或学本质为多羟醛或多羟多羟酮类及其衍生物或多酮类及其衍生物或多聚物。聚物。糖的化学糖的化学(二)糖的分类及其结构(二)糖的分类及其结构OHOHHHOHHOHOOHOOHHHHOHOHHOHHCH2OH葡萄糖葡萄糖(glucose)已醛糖已醛糖果糖果糖(fructose)已酮糖已酮糖 OHOHOHOHHHOHHOH1.单糖单糖 不能再水解的糖。不能再水解的糖。OOHOHHOH2CHHOHHCH2OH2.寡糖寡糖常见的几种二糖有常见的几种二糖有麦芽糖麦芽糖 (maltose)葡萄糖葡萄糖 葡萄糖葡萄糖蔗蔗 糖糖(sucrose)葡萄糖葡萄糖 果糖果糖乳乳 糖糖(lactose)葡萄糖葡萄糖 半乳糖半乳糖能水解生成几分子单糖的糖,各单糖之间借能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。脱水缩合的糖苷键相连。3.多糖多糖 能水解生成多个分子单糖的糖。能水解生成多个分子单糖的糖。常见的多糖有常见的多糖有淀淀 粉粉(starch)糖糖 原原(glycogen)纤维素纤维素 (cellulose)淀粉淀粉 是植物中养分的储存形式是植物中养分的储存形式淀粉颗粒淀粉颗粒 糖原糖原 是动物体内葡萄糖的储存形式是动物体内葡萄糖的储存形式 纤维素纤维素 作为植物的骨架作为植物的骨架-1,4-糖苷键糖苷键第第 一一 节节 概概 述述1.氧化供能氧化供能如糖可提供合成某些氨基酸、脂肪、胆固醇、如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷酸等物质的原料。核苷酸等物质的原料。3.组成组成人体组织结构的重要成分人体组织结构的重要成分这是糖的主要功能,占这是糖的主要功能,占70%70%。2.其他物质的碳源其他物质的碳源如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。4.参与构成体内一些重要的生物活性物质参与构成体内一些重要的生物活性物质如激素、酶、免疫球蛋白、血浆蛋白如激素、酶、免疫球蛋白、血浆蛋白二、糖的消化、吸收和转运二、糖的消化、吸收和转运(一)糖的消化(一)糖的消化人类食物中的糖主要有植物淀粉、动物人类食物中的糖主要有植物淀粉、动物糖原以及麦芽糖、蔗糖、乳糖、葡萄糖等,糖原以及麦芽糖、蔗糖、乳糖、葡萄糖等,其中以其中以淀粉淀粉为主。为主。消化部位:消化部位:主要在小肠,少量在口腔主要在小肠,少量在口腔淀粉淀粉 麦芽糖麦芽糖+麦芽三糖麦芽三糖(40%)(25%)-临界糊精临界糊精+异麦芽糖异麦芽糖 (30%)(5%)葡萄糖葡萄糖 唾液中的唾液中的-淀粉酶淀粉酶 -葡萄糖苷酶葡萄糖苷酶 -临界糊精酶临界糊精酶 消化过程消化过程 肠粘膜肠粘膜上皮细胞上皮细胞刷状缘刷状缘 胃胃 口腔口腔 肠腔肠腔 胰液中的胰液中的-淀粉酶淀粉酶 食物中含有的大量纤维素,因人体内无食物中含有的大量纤维素,因人体内无-糖苷酶糖苷酶而不能对其分解利用,但却具有刺而不能对其分解利用,但却具有刺激肠蠕动等作用,也是维持健康所必需。激肠蠕动等作用,也是维持健康所必需。(二)糖的吸收(二)糖的吸收2.吸收部位吸收部位 小肠上段小肠上段 1.吸收形式吸收形式 单单 糖糖 3.吸收途径吸收途径 小肠肠腔小肠肠腔 肠粘膜上皮细胞肠粘膜上皮细胞 门静脉门静脉 肝脏肝脏 体循环体循环各种组织细胞各种组织细胞 GLUT G L U T:葡 萄 糖 转 运 体:葡 萄 糖 转 运 体(glucose transporter),已发现有已发现有5种葡萄糖转运体种葡萄糖转运体(GLUT 15)。葡萄糖葡萄糖 无氧酵解无氧酵解 H2O及及CO2 乳酸乳酸 糖异生途径糖异生途径 乳酸、氨基酸、甘油乳酸、氨基酸、甘油 糖原糖原 肝糖原分解肝糖原分解 糖原合成糖原合成 磷酸戊糖途径磷酸戊糖途径 核核 糖糖 +NADPH+H+淀粉淀粉 消化与吸收消化与吸收 ATP 有氧氧化有氧氧化第第 二二 节节糖的无氧分解糖的无氧分解 Glycolysis 一、糖酵解的反应过程一、糖酵解的反应过程 v 糖酵解糖酵解(glycolysis)的定义的定义v 糖酵解分为糖酵解分为二二个阶段个阶段v 糖酵解的反应部位:糖酵解的反应部位:胞浆胞浆在缺氧情况下,葡萄糖生成乳酸在缺氧情况下,葡萄糖生成乳酸(lactate)并并产生能量的过程称之为产生能量的过程称之为糖酵解糖酵解。葡萄糖葡萄糖磷酸化为磷酸化为6-磷酸葡萄糖磷酸葡萄糖ATP ADPMg2+己糖激酶己糖激酶(hexokinase)Glu G-6-P F-6-P F-1,6-2PATP ADP ATP ADP 1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸葡萄糖葡萄糖 O CH2HO H HOOHH OH H OH H H6-磷酸葡萄糖磷酸葡萄糖(glucose-6-phosphate,G-6-P)P P O CH2OH HOOHH OH H OH H H从糖原开始的糖酵解从糖原开始的糖酵解糖原糖原n n+1 +1 糖原糖原n+1-n+1-磷酸葡萄糖磷酸葡萄糖 磷酸化酶磷酸化酶磷酸葡萄糖变位酶磷酸葡萄糖变位酶 6-6-磷酸葡萄糖磷酸葡萄糖 6-磷酸葡萄糖磷酸葡萄糖的异构反应:转变为的异构反应:转变为 6-磷酸果糖磷酸果糖 己糖异构酶己糖异构酶 GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸6-磷酸葡萄糖磷酸葡萄糖 P P O CH2OH HOOHH OH H OH H H6-磷酸果糖磷酸果糖 (fructose-6-phosphate,F-6-P)6-磷酸果糖磷酸果糖磷酸化生成磷酸化生成1,6-二磷酸果糖二磷酸果糖 ATP ADP Mg2+6-6-磷酸果糖激酶磷酸果糖激酶-1 1GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸6-磷酸果糖磷酸果糖 1,6-二磷酸果糖二磷酸果糖(1,6-fructose-biphosphate,F-1,6-2P)CH2OHOCCCCCH2OOHOHOHHHP PP P1,6-二磷酸果糖二磷酸果糖 1,6-1,6-二磷酸果糖二磷酸果糖裂解成裂解成2分子分子磷酸丙糖磷酸丙糖 醛缩酶醛缩酶(aldolase)GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸磷酸二羟丙酮磷酸二羟丙酮 3-磷酸甘油醛磷酸甘油醛 +CHOCHOHCHOHOHCH2POCH2P POCH2OHCOCH2POCH2P PO 磷酸丙糖磷酸丙糖的异构反应的异构反应磷酸丙糖异构酶磷酸丙糖异构酶 GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸3-磷酸甘油醛磷酸甘油醛 CHOCHOHCHOHOHCH2POCH2P PO磷酸二羟丙酮磷酸二羟丙酮 CH2OHCOCH2POCH2P PO 3-磷酸甘油醛磷酸甘油醛氧化为氧化为1,3-二磷酸甘油二磷酸甘油酸酸 Pi、NAD+NADH+H+3-3-磷酸甘油醛脱氢酶磷酸甘油醛脱氢酶GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸3-磷酸甘油醛磷酸甘油醛 CHOCHOHCHOHOHCH2POCH2P PO1,3-二磷酸二磷酸甘油酸甘油酸 O=CCOHCH2POP POP POADP ATP 磷酸甘油酸激酶磷酸甘油酸激酶 GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 在以上反应中,底物氧化过程中产生的在以上反应中,底物氧化过程中产生的能量直接将能量直接将ADP磷酸化生成磷酸化生成ATP的过程,称的过程,称为为底物水平磷酸化底物水平磷酸化(substrate level phosphorylation)。1,3-二磷酸二磷酸 甘油酸甘油酸O=CCOHCH2POP POP PO3-磷酸甘油酸磷酸甘油酸 COOHCOHCH2POP PO 3-磷酸甘油酸磷酸甘油酸转变为转变为2-磷酸甘油酸磷酸甘油酸 磷酸甘油酸磷酸甘油酸变位酶变位酶GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸3-磷酸甘油酸磷酸甘油酸 COOHCOHCH2POP PO2-磷酸甘油酸磷酸甘油酸 COOHCCH2POP POOHOH 2-磷酸甘油酸磷酸甘油酸转变为转变为磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 烯醇化酶烯醇化酶(enolase)GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸2-2-磷酸甘油酸磷酸甘油酸 COOHCCH2POP POOHOH+H2O磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 (phosphoenolpyruvate,PEP)COOHCCH2P POADP ATP K+Mg2+丙酮酸激酶丙酮酸激酶(pyruvate kinase)GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-二磷酸甘油酸二磷酸甘油酸3-磷酸甘油酸磷酸甘油酸2-磷酸甘油酸磷酸甘油酸丙酮酸丙酮酸磷酸二磷酸二羟丙酮羟丙酮3-磷酸磷酸甘油醛甘油醛NAD+NADH+H+ADPATPADPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸转变成转变成丙酮酸丙酮酸,并通过底物水平磷酸化生成并通过底物水平磷酸化生成ATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 COOHCCH2P PO丙酮酸丙酮酸 COOHC=OCH3(二二)2)2分子丙酮酸转变生成分子丙酮酸转变生成2 2分子乳酸分子乳酸丙酮酸丙酮酸 乳酸乳酸 反应中的反应中的NADH+H+来自于上述第来自于上述第6 6步反步反应中的应中的 3-3-磷酸甘油醛脱氢反应。磷酸甘油醛脱氢反应。乳酸脱氢酶乳酸脱氢酶(LDH)NADH+H+NAD+COOHCHOHCH3COOHC=OCH3丙酮酸丙酮酸转变成转变成乳酸乳酸葡萄糖酵解的总反应式:葡萄糖+2Pi+ADP 2乳酸+2ATP+2H2OE1:己糖激酶己糖激酶 E2:6-磷酸果糖激酶磷酸果糖激酶-1 E3:丙酮酸激酶丙酮酸激酶 NAD+乳乳 酸酸 糖酵解的代谢途径糖酵解的代谢途径GluG-6-PF-6-PF-1,6-2PATP ADP ATPADP1,3-二磷酸甘油酸二磷酸甘油酸 3-磷酸甘油酸磷酸甘油酸 2-磷酸甘油酸磷酸甘油酸 丙丙 酮酮 酸酸 磷酸二羟丙酮磷酸二羟丙酮 3-磷酸甘油醛磷酸甘油醛 NAD+NADH+H+ADP ATP ADP ATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 E2E1E3NADH+H+二、糖酵解的反应特点二、糖酵解的反应特点 反应部位:胞浆反应部位:胞浆 糖酵解是一个不需氧的产能过程糖酵解是一个不需氧的产能过程 反应全过程中有三步不可逆的反应反应全过程中有三步不可逆的反应G G-6-P ATP ADP 己糖激酶己糖激酶 ATP ADP F-6-P F-1,6-2P 磷酸果糖激酶磷酸果糖激酶-1 ADP ATP PEP 丙酮酸丙酮酸 丙酮酸丙酮酸激酶激酶 产能的方式和数量产能的方式和数量方式:方式:底物水平磷酸化底物水平磷酸化净生成净生成ATP数量:数量:从从G开始开始 22-2=2ATP从从Gn开始开始 22-1=3ATP 终产物乳酸的去路终产物乳酸的去路释放入血,进入肝脏再进一步代谢。释放入血,进入肝脏再进一步代谢。分解利用分解利用 乳酸循环(糖异生)乳酸循环(糖异生)激素调节:激素调节:胰岛素、胰高血糖素对限速酶的变构胰岛素、胰高血糖素对限速酶的变构或修饰调节慢,但作用比较持久。或修饰调节慢,但作用比较持久。三、糖酵解的调节三、糖酵解的调节关键酶关键酶己糖激酶己糖激酶 磷酸果糖激酶磷酸果糖激酶-1-1(PFK-1PFK-1)丙酮酸激酶丙酮酸激酶 代谢物对限速酶的调节代谢物对限速酶的调节1.磷酸果糖激酶磷酸果糖激酶-1(PFK-1)别构调节别构调节 别构激活剂:别构激活剂:AMP;ADP;F-6-P;F-2,6-2P 别构抑制剂:别构抑制剂:柠檬酸柠檬酸;ATP(高浓度)(高浓度)此酶有二个结合此酶有二个结合ATP的部位:的部位:活性中心活性中心底物底物结合部位(低浓度时)结合部位(低浓度时)活性中心外活性中心外别构调节别构调节部位(高浓度时部位(高浓度时)F-1,6-2P 是最强的变构剂是最强的变构剂F-6-P F-1,6-2P ATP ADP PFK-1磷蛋白磷酸酶磷蛋白磷酸酶 Pi PKA ATP ADP Pi 胰高血糖素胰高血糖素 ATP cAMP 活化活化 F-2,6-2P +/+AMP +柠檬酸柠檬酸 AMP+柠檬酸柠檬酸 PFK-2(有活性)(有活性)FBP-2(无活性)(无活性)6-磷酸果糖激酶磷酸果糖激酶-2 PFK-2(无活性)(无活性)FBP-2(有活性)(有活性)PP果糖二磷酸酶果糖二磷酸酶-2 2.丙酮酸激酶丙酮酸激酶1.别构调节别构调节别构抑制剂:别构抑制剂:ATP、丙氨酸、丙氨酸别构激活剂:别构激活剂:1,6-二磷酸果糖、二磷酸果糖、ADP2.共价修饰调节共价修饰调节丙酮酸激酶丙酮酸激酶 丙酮酸激酶丙酮酸激酶 ATP ADP Pi 磷蛋白磷酸酶磷蛋白磷酸酶(无活性)(无活性)(有活性)(有活性)胰高血糖素胰高血糖素 PKA,CaM激酶激酶PPKA:蛋白激酶蛋白激酶A(protein kinase A)CaM:钙调蛋白钙调蛋白3.3.己糖激酶或葡萄糖激酶己糖激酶或葡萄糖激酶*6-磷酸葡萄糖磷酸葡萄糖可反馈抑制己糖激酶,但可反馈抑制己糖激酶,但肝葡萄糖激酶不受其抑制。肝葡萄糖激酶不受其抑制。*长链脂肪酰长链脂肪酰CoA可别构抑制肝葡萄糖激酶。可别构抑制肝葡萄糖激酶。四、糖酵解的生理意义四、糖酵解的生理意义1.是有氧氧化的前段过程。是有氧氧化的前段过程。2.是某些细胞在氧供应正常情况下的重要供能是某些细胞在氧供应正常情况下的重要供能途径。途径。无线粒体的细胞,如:红细胞无线粒体的细胞,如:红细胞 代谢活跃的细胞,如:白细胞、骨髓细胞代谢活跃的细胞,如:白细胞、骨髓细胞3.是机体在缺氧情况下获取能量的有效方式。是机体在缺氧情况下获取能量的有效方式。E1:己糖激酶己糖激酶 E2:6-磷酸果糖激酶磷酸果糖激酶-1 E3:丙酮酸激酶丙酮酸激酶 NAD+乳乳 酸酸 糖酵解的代谢途径糖酵解的代谢途径GluG-6-PF-6-PF-1,6-2PATP ADP ATPADP1,3-二磷酸甘油酸二磷酸甘油酸 3-磷酸甘油酸磷酸甘油酸 2-磷酸甘油酸磷酸甘油酸 丙丙 酮酮 酸酸 磷酸二羟丙酮磷酸二羟丙酮 3-磷酸甘油醛磷酸甘油醛 NAD+NADH+H+ADP ATP ADP ATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 E2E1E3NADH+H+第第 三三 节节糖的有氧氧化糖的有氧氧化 Aerobic Oxidation of Carbohydrate糖的有氧氧化糖的有氧氧化(aerobic oxidation)葡萄糖葡萄糖或糖原在有氧条件下彻底氧化成或糖原在有氧条件下彻底氧化成H2O和和CO2,并释放出并释放出能量能量的过程。是机体主要供能方式。的过程。是机体主要供能方式。*部位部位:胞液及线粒体胞液及线粒体 一、有氧氧化的反应过程一、有氧氧化的反应过程 第一阶段:酵解途径第一阶段:酵解途径 第二阶段:丙酮酸的氧化脱羧第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环第三阶段:三羧酸循环 G(Gn)氧化磷酸化氧化磷酸化 丙酮酸丙酮酸 乙酰乙酰CoA CO2 NADH+H+FADH2H2O O ATP ADP TAC循环循环 胞液胞液 线粒体线粒体 (一)葡萄糖或糖原生成丙酮酸(一)葡萄糖或糖原生成丙酮酸酵解途径酵解途径(二)丙酮酸氧化脱羧生成乙酰辅酶(二)丙酮酸氧化脱羧生成乙酰辅酶A丙酮酸进入线粒体,丙酮酸进入线粒体,氧化脱羧为乙酰氧化脱羧为乙酰CoA(acetyl CoA)。丙酮酸丙酮酸 乙酰乙酰CoA NAD+,HSCoA CO2,NADH+H+丙酮酸脱氢酶复合体丙酮酸脱氢酶复合体 总反应式总反应式:丙酮酸脱氢酶复合体的组成丙酮酸脱氢酶复合体的组成 酶酶E1:丙酮酸脱氢酶:丙酮酸脱氢酶E2:二氢硫辛酰胺转乙酰酶:二氢硫辛酰胺转乙酰酶E3:二氢硫辛酰胺脱氢酶:二氢硫辛酰胺脱氢酶HSCoANAD+辅辅 酶酶 TPP 硫辛酸(硫辛酸()HSCoA FAD,NAD+SSL丙酮酸脱氢酶复合体催化的反应过程丙酮酸脱氢酶复合体催化的反应过程1.丙酮酸脱羧形成羟乙基丙酮酸脱羧形成羟乙基-TPP。2.由二氢硫辛酰胺转乙酰酶由二氢硫辛酰胺转乙酰酶(E2)催化形成乙酰硫辛催化形成乙酰硫辛酰胺酰胺-E2。3.二氢硫辛酰胺转乙酰酶二氢硫辛酰胺转乙酰酶(E2)催化生成乙酰催化生成乙酰CoA,同同时使硫辛酰胺上的二硫键还原为时使硫辛酰胺上的二硫键还原为2个巯基。个巯基。4.二氢硫辛酰胺脱氢酶二氢硫辛酰胺脱氢酶(E3)使还原的二氢硫辛酰胺使还原的二氢硫辛酰胺脱氢,同时将氢传递给脱氢,同时将氢传递给FAD。5.在二氢硫辛酰胺脱氢酶在二氢硫辛酰胺脱氢酶(E3)催化下,将催化下,将FADH2上上的的H转移给转移给NAD+,形成,形成NADH+H+。CO2 CoASHNAD+NADH+H+5.NADH+H+的生成的生成1.-羟乙基羟乙基-TPP的生成的生成 2.乙酰硫辛酰乙酰硫辛酰胺的生成胺的生成 3.乙酰乙酰CoA的生成的生成4.硫辛酰胺的生成硫辛酰胺的生成 三羧酸循环三羧酸循环(Tricarboxylic acid Cycle,TAC)也称为也称为柠檬酸循环柠檬酸循环,这是因为循环反应中的第一,这是因为循环反应中的第一个中间产物是一个含三个羧基的柠檬酸。由于个中间产物是一个含三个羧基的柠檬酸。由于Krebs正式提出了三羧酸循环的学说,故此循环正式提出了三羧酸循环的学说,故此循环又称为又称为Krebs循环,它由一连串反应组成循环,它由一连串反应组成。所有的反应均在所有的反应均在线粒体线粒体中进行。中进行。*概述概述*反应部位反应部位 CoASHNADH+H+NAD+NAD+NADH+H+FADFADH2NADH+H+NAD+H2OH2OH2OCoASHCoASHH2O柠檬酸合酶柠檬酸合酶顺乌头酸梅异柠檬酸脱氢酶异柠檬酸脱氢酶-酮戊二酸脱氢酶复合体酮戊二酸脱氢酶复合体琥珀酰CoA合成酶琥珀酸脱氢酶延胡索酸酶苹果酸脱氢酶GTPGDPATPADP核苷二磷酸激酶核苷二磷酸激酶小小 结结 三羧酸循环的概念三羧酸循环的概念:指乙酰指乙酰CoA和和草酰乙酸草酰乙酸缩合生成缩合生成含三个羧基的柠檬酸含三个羧基的柠檬酸,反复的进行,反复的进行脱氢脱羧,又生成脱氢脱羧,又生成草酰乙酸草酰乙酸,再重复循环反,再重复循环反应的过程。应的过程。TAC过程的反应部位过程的反应部位是线粒体。是线粒体。三羧酸循环的要点三羧酸循环的要点 经过一次三羧酸循环,经过一次三羧酸循环,l消耗一分子乙酰消耗一分子乙酰CoA,l经四次脱氢,二次脱羧,一次底物水平磷酸化。经四次脱氢,二次脱羧,一次底物水平磷酸化。l生成生成1分子分子FADH2,3分子分子NADH+H+,2分子分子CO2,1分子分子GTP。l关键酶有:关键酶有:柠檬酸合酶柠檬酸合酶 -酮戊二酸脱氢酶复合体酮戊二酸脱氢酶复合体 异柠檬酸脱氢酶异柠檬酸脱氢酶 整个循环反应为不可逆反应整个循环反应为不可逆反应 三羧酸循环的中间产物三羧酸循环的中间产物三羧酸循环中间产物起催化剂的作用,三羧酸循环中间产物起催化剂的作用,本身无量的变化,不可能通过三羧酸循环直本身无量的变化,不可能通过三羧酸循环直接从乙酰接从乙酰CoA合成草酰乙酸或三羧酸循环中合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三羧其他产物,同样中间产物也不能直接在三羧酸循环中被氧化为酸循环中被氧化为CO2及及H2O。乙酰乙酰CoA CO2 NADH+H+NAD+-酮戊二酸酮戊二酸 谷氨酸谷氨酸 其来源如下:其来源如下:是三大营养物质氧化分解的共同途径;是三大营养物质氧化分解的共同途径;是三大营养物质代谢联系的枢纽;是三大营养物质代谢联系的枢纽;为呼吸链提供为呼吸链提供H+e。H+e 进入进入呼吸链呼吸链彻底氧化生成彻底氧化生成H2O 的同的同时时ADP偶联磷酸化生成偶联磷酸化生成ATP。NADH+H+H2O、3ATP O H2O、2ATP FADH2 O 第一阶段:酵解途径第一阶段:酵解途径?1分子葡萄糖经酵解途径产生的能量?分子葡萄糖经酵解途径产生的能量?第二阶段:丙酮酸的氧化脱羧第二阶段:丙酮酸的氧化脱羧?第三阶段:三羧酸循环?第三阶段:三羧酸循环?葡萄糖有氧氧化生成的葡萄糖有氧氧化生成的ATP 反反应应辅辅 酶酶ATP 第第一一阶阶段段葡萄糖葡萄糖 6-磷酸葡萄糖磷酸葡萄糖-1 6-磷酸果糖磷酸果糖 1,6-双磷酸果糖双磷酸果糖-1 23-磷酸甘油醛磷酸甘油醛 21,3-二磷酸甘油酸二磷酸甘油酸NAD+2 3或或2 2*21,3-二磷酸甘油酸二磷酸甘油酸 23-磷酸甘油酸磷酸甘油酸2 1 2 磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 2丙酮酸丙酮酸2 1 第二阶段第二阶段2 丙酮酸丙酮酸 2 乙酰乙酰CoA2 3 第第三三阶阶段段2异柠檬酸异柠檬酸 2 -酮戊二酸酮戊二酸2 3 2-酮戊二酸酮戊二酸 2 琥珀酰琥珀酰CoA2 3 2琥珀酰琥珀酰CoA 2 琥珀酸琥珀酸2 1 2琥珀酸琥珀酸 2 延胡索酸延胡索酸FAD 2 2 2苹果酸苹果酸 2 草酰乙酸草酰乙酸NAD+2 3 净生成净生成38(或或36)ATP NAD+NAD+NAD+此表按传统方式计算此表按传统方式计算ATP。目前有新的理论,在此不作详述。目前有新的理论,在此不作详述三、有氧氧化的调节三、有氧氧化的调节关关键键酶酶 酵解途径:酵解途径:己糖激酶己糖激酶 丙酮酸的氧化脱羧:丙酮酸的氧化脱羧:丙酮酸脱氢酶复合体丙酮酸脱氢酶复合体 三羧酸循环:三羧酸循环:柠檬酸合酶柠檬酸合酶丙酮酸激酶丙酮酸激酶6-6-磷酸果糖激酶磷酸果糖激酶-1-1-酮戊二酸脱氢酶复合体酮戊二酸脱氢酶复合体异柠檬酸脱氢酶异柠檬酸脱氢酶1.丙酮酸脱氢酶复合体丙酮酸脱氢酶复合体 别构调节别构调节别构抑制剂:乙酰别构抑制剂:乙酰CoA;NADH;ATP 别构激活剂:别构激活剂:AMP;ADP;NAD+*乙酰乙酰CoA/HSCoA 或或 NADH/NAD+时,其时,其活性也受到抑制。活性也受到抑制。共价修饰调节共价修饰调节 目目 录录乙酰乙酰CoA 柠檬酸柠檬酸 草酰乙酸草酰乙酸 琥珀酰琥珀酰CoA -酮戊二酸酮戊二酸 异柠檬酸异柠檬酸 苹果酸苹果酸 NADH FADH2 GTP ATP 异柠檬异柠檬酸酸 脱氢脱氢酶酶柠檬酸合酶柠檬酸合酶 -酮戊二酸酮戊二酸脱氢酶复合体脱氢酶复合体 ATP +ADP ADP +ATP 柠檬酸柠檬酸 琥珀酰琥珀酰CoA NADH 琥珀酰琥珀酰CoA NADH +Ca2+Ca2+ATP、ADP的影响的影响 产物堆积引起抑制产物堆积引起抑制 循环中后续反应循环中后续反应中间产物别位反馈抑中间产物别位反馈抑制前面反应中的酶制前面反应中的酶3.其他,如其他,如Ca2+可激可激活许多酶活许多酶2.三羧酸循环的调节三羧酸循环的调节四、有氧氧化的生理意义四、有氧氧化的生理意义 糖的有氧氧化是机体糖的有氧氧化是机体产能最主要的途径产能最主要的途径。它不。它不仅仅产能效率高产能效率高,而且由于产生的能量逐步分次,而且由于产生的能量逐步分次释放,相当一部分形成释放,相当一部分形成ATP,所以,所以能量的利用能量的利用率也高率也高。简言之,即“供能”五、相互调节五、相互调节*概念概念*机制机制 有氧时,有氧时,NADH+H+进入线粒体内氧化,丙进入线粒体内氧化,丙酮酸进入线立体进一步氧化而不生成乳酸酮酸进入线立体进一步氧化而不生成乳酸;巴士德效应巴士德效应(Pastuer effect)指有氧氧化抑指有氧氧化抑制糖酵解的现象。制糖酵解的现象。缺氧时,酵解途径加强,缺氧时,酵解途径加强,NADH+H+在胞浆浓在胞浆浓度升高,丙酮酸作为氢接受体生成乳酸。度升高,丙酮酸作为氢接受体生成乳酸。第第 四四 节节 磷酸戊糖途径磷酸戊糖途径Pentose Phosphate Pathway*概念概念磷酸戊糖途径磷酸戊糖途径是指由葡萄糖生成是指由葡萄糖生成磷酸戊磷酸戊糖糖及及NADPH+H+,前者再进一步转变成,前者再进一步转变成3-磷酸甘油醛磷酸甘油醛和和6-磷酸果糖磷酸果糖的反应过程。的反应过程。*细胞定位:细胞定位:胞胞 液液 第一阶段:氧化反应第一阶段:氧化反应 生成生成磷酸戊糖磷酸戊糖,NADPH+H+及及CO2一、磷酸戊糖途径的反应过程一、磷酸戊糖途径的反应过程*反应过程可分为二个阶段反应过程可分为二个阶段 第二阶段则是非氧化反应第二阶段则是非氧化反应 包括一系列基团转移。包括一系列基团转移。CCCCCOOCH2OHOHOHOHHHHOHP P6-磷酸葡萄糖酸磷酸葡萄糖酸 CH2OHC=OCCCH2OOHOHHHP P5-磷酸核酮糖磷酸核酮糖 NADPH+H+NADP+H2O NADP+CO2 NADPH+H+6-磷酸葡萄糖脱氢酶磷酸葡萄糖脱氢酶 6-磷酸葡萄糖酸脱氢酶磷酸葡萄糖酸脱氢酶 CH2OH C O 6-磷酸葡萄糖磷酸葡萄糖 CCCCCCH2OHOHOHOHHHHOHHOP P6-磷酸葡萄糖酸内酯磷酸葡萄糖酸内酯 CCCCC=OCH2OHOHOHHHHOHOP P1.磷酸戊糖生成磷酸戊糖生成 5-磷酸核糖磷酸核糖 催化第一步脱氢反应的催化第一步脱氢反应的6-磷酸葡萄糖脱氢酶磷酸葡萄糖脱氢酶是此代谢途径的关键酶。是此代谢途径的关键酶。两次脱氢脱下的氢均由两次脱氢脱下的氢均由NADP+接受生成接受生成NADPH+H+。反应生成的磷酸核糖是一个非常重要的中间反应生成的磷酸核糖是一个非常重要的中间产物。产物。G-6-P 5-磷酸核糖磷酸核糖 NADP+NADPH+H+NADP+NADPH+H+CO2 每每3分子分子6-磷酸葡萄糖同时参与反应,在一系列磷酸葡萄糖同时参与反应,在一系列反应中,通过反应中,通过3C、4C、6C、7C等演变阶段,最等演变阶段,最终生成终生成3-磷酸甘油醛磷酸甘油醛和和6-磷酸果糖磷酸果糖。3-磷酸甘油醛磷酸甘油醛和和6-磷酸果糖磷酸果糖,可进入酵解途,可进入酵解途径。因此,磷酸戊糖途径也称径。因此,磷酸戊糖途径也称磷酸戊糖旁路磷酸戊糖旁路(pentose phosphate shunt)。2.基团转移反应基团转移反应 5-磷酸核酮糖磷酸核酮糖(C5)3 5-磷酸核糖磷酸核糖 C55-磷酸木酮糖磷酸木酮糖 C55-磷酸木酮糖磷酸木酮糖 C57-磷酸景天糖磷酸景天糖 C73-磷酸甘油醛磷酸甘油醛 C34-磷酸赤藓糖磷酸赤藓糖 C46-磷酸果糖磷酸果糖 C66-磷酸果糖磷酸果糖 C63-磷酸磷酸甘油醛甘油醛 C3磷酸戊糖途径磷酸戊糖途径第一阶段第一阶段 第第二二阶阶段段 5-磷酸木酮糖磷酸木酮糖 C55-磷酸木酮糖磷酸木酮糖 C57-磷酸景天糖磷酸景天糖 C73-磷酸甘油醛磷酸甘油醛 C34-磷酸赤藓糖磷酸赤藓糖 C46-磷酸果糖磷酸果糖 C66-磷酸果糖磷酸果糖 C63-磷酸磷酸甘油醛甘油醛 C36-磷酸葡萄糖磷酸葡萄糖(C6)3 6-磷酸葡萄糖酸内酯磷酸葡萄糖酸内酯(C6)3 6-磷酸葡萄糖酸磷酸葡萄糖酸(C6)3 5-磷酸核酮糖磷酸核酮糖(C5)3 5-磷酸核糖磷酸核糖 C53NADP+3NADP+3H+6-磷酸葡萄糖脱氢酶磷酸葡萄糖脱氢酶 3NADP+3NADP+3H+6-磷酸葡萄糖酸脱氢酶磷酸葡萄糖酸脱氢酶 CO2总反应式总反应式 36-磷酸葡萄糖磷酸葡萄糖+6 NADP+26-磷酸果糖磷酸果糖+3-磷酸甘油醛磷酸甘油醛+6NADPH+H+3CO2 二、磷酸戊糖途径的生理意义二、磷酸戊糖途径的生理意义(一)为核酸的生成提供(一)为核酸的生成提供核糖核糖(二)提供(二)提供NADPH作为供氢体参与多种作为供氢体参与多种代谢反应代谢反应 1.NADPH是体内许多合成代谢的供氢体是体内许多合成代谢的供氢体 2.NADPH参与体内的羟化反应,与参与体内的羟化反应,与肝脏肝脏生物转化生物转化有关有关3.NADPH可维持可维持GSH的还原性的还原性 2G-SH G-S-S-GNADP+NADPH+H+A AH2 第第 六六 节节 糖糖 异异 生生 作作 用用糖异生糖异生(gluconeogenesis)是指从非糖是指从非糖化合物转变为葡萄糖或糖原的过程。化合物转变为葡萄糖或糖原的过程。*部位部位*原料原料*概念概念 主要在肝、肾细胞的胞浆及线粒体主要在肝、肾细胞的胞浆及线粒体 主要有丙酮酸、乳酸、甘油、生糖氨基酸主要有丙酮酸、乳酸、甘油、生糖氨基酸一、糖异生的代谢途径一、糖异生的代谢途径 *定义定义*过程过程 酵解途径中有酵解途径中有3个由关键酶催化的不可逆反应个由关键酶催化的不可逆反应。在糖异生时,须由另外的反应和酶代替。在糖异生时,须由另外的反应和酶代替。糖异生途径与酵解途径大多数反应是共有的、糖异生途径与酵解途径大多数反应是共有的、可逆的;可逆的;糖异生途径糖异生途径(gluconeogenic pathway)指从丙酮指从丙酮酸生成葡萄糖的具体反应过程。酸生成葡萄糖的具体反应过程。E1:己糖激酶己糖激酶 E2:6-磷酸果糖激酶磷酸果糖激酶-1 E3:丙酮酸激酶丙酮酸激酶 NAD+乳乳 酸酸 糖酵解的代谢途径糖酵解的代谢途径GluG-6-PF-6-PF-1,6-2PATP ADP ATPADP1,3-二磷酸甘油酸二磷酸甘油酸 3-磷酸甘油酸磷酸甘油酸 2-磷酸甘油酸磷酸甘油酸 丙丙 酮酮 酸酸 磷酸二羟丙酮磷酸二羟丙酮 3-磷酸甘油醛磷酸甘油醛 NAD+NADH+H+ADP ATP ADP ATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 E2E1E3NADH+H+1.丙酮酸转变成磷酸烯醇式丙酮酸丙酮酸转变成磷酸烯醇式丙酮酸(PEP)丙酮酸丙酮酸 草酰乙酸草酰乙酸 PEP ATP ADP+Pi CO2 GTP GDPCO2 丙酮酸羧化酶丙酮酸羧化酶(pyruvate carboxylase),辅酶,辅酶为生物素(反应在线粒体)为生物素(反应在线粒体)磷酸烯醇式丙酮酸羧激酶(反应在线粒体、磷酸烯醇式丙酮酸羧激酶(反应在线粒体、胞液)胞液)目目 录录 草酰乙酸转运出线粒体草酰乙酸转运出线粒体 出线粒体出线粒体 苹果酸苹果酸 苹果酸苹果酸 草酰乙酸草酰乙酸 草酰乙酸草酰乙酸 草酰乙酸草酰乙酸 天冬氨酸天冬氨酸 出线粒体出线粒体 天冬氨酸天冬氨酸 草酰乙酸草酰乙酸 丙酮酸丙酮酸 丙酮酸丙酮酸 草酰乙酸草酰乙酸 丙酮酸羧化酶丙酮酸羧化酶 ATP+CO2ADP+Pi 苹果酸苹果酸 NADH+H+NAD+天冬氨酸天冬氨酸 谷氨酸谷氨酸 -酮戊二酸酮戊二酸 天冬氨酸天冬氨酸 苹果酸苹果酸 草酰乙酸草酰乙酸 PEP 磷酸烯醇型丙酮酸羧激酶磷酸烯醇型丙酮酸羧激酶 GTP GDP+CO2 线线粒粒体体胞胞液液2.1,6-二磷酸果糖二磷酸果糖 转变为转变为 6-磷酸果糖磷酸果糖 1,6-二磷酸果糖二磷酸果糖 6-磷酸果糖磷酸果糖 Pi 果糖二磷酸酶果糖二磷酸酶 3.6-磷酸葡萄糖水解为葡萄糖磷酸葡萄糖水解为葡萄糖 6-磷酸葡萄糖磷酸葡萄糖 葡萄糖葡萄糖 Pi 葡萄糖葡萄糖-6-磷酸酶磷酸酶 非糖物质进入糖异生的途径非糖物质进入糖异生的途径 糖异生的原料转变成糖代谢的中间产物糖异生的原料转变成糖代谢的中间产物 生糖氨基酸生糖氨基酸 -酮酸酮酸 -NH2 甘油甘油 -磷酸甘油磷酸甘油 磷酸二羟丙酮磷酸二羟丙酮 乳酸乳酸 丙酮酸丙酮酸 2H 前述糖代谢中间代谢产物进入糖异生途径,前述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原异生为葡萄糖或糖原 二、糖异生的调节二、糖异生的调节 6-磷酸果糖磷酸果糖 1,6-二磷酸果糖二磷酸果糖 6-磷酸果糖激酶磷酸果糖激酶-1 果糖二磷酸酶果糖二磷酸酶-1 ADP ATP Pi 6-磷酸葡萄糖磷酸葡萄糖 葡萄糖葡萄糖 葡萄糖葡萄糖-6-磷酸酶磷酸酶 己糖激酶己糖激酶 ATP ADP Pi PEP 丙酮酸丙酮酸草酰乙酸草酰乙酸 丙酮酸激酶丙酮酸激酶 丙酮酸羧化酶丙酮酸羧化酶 ADP ATP CO2+ATP ADP+Pi GTP 磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 羧激酶羧激酶GDP+Pi +CO2 三个方面:三个方面:酶的含量酶的含量 别构调节别构调节 共价修饰调共价修饰调节节二个概念:二个概念:底物循环底物循环 无效循环无效循环 三、糖异生的生理意义三、糖异生的生理意义(一)维持血糖浓度恒定(一)维持血糖浓度恒定 (二)乳酸再利用(二)乳酸再利用三碳途径三碳途径:指进食后,大部分葡萄糖指进食后,大部分葡萄糖先在肝外细胞中分解为乳酸或丙酮酸等三碳先在肝外细胞中分解为乳酸或丙酮酸等三碳化合物,再进入肝细胞异生为糖原的过程。化合物,再进入肝细胞异生为糖原的过程。糖异生活跃糖异生活跃有葡萄糖有葡萄糖-6磷酸酶磷酸酶【】肝肝 肌肉肌肉 乳酸循环乳酸循环又称又称Cori循环循环葡萄糖葡萄糖 葡萄糖葡萄糖 葡萄糖葡萄糖 酵解途径酵解途径 丙酮酸丙酮酸 乳酸乳酸 NADH NAD+乳酸乳酸 乳酸乳酸 NAD+NADH 丙酮酸丙酮酸 糖异生途径糖异生途径 血液血液 糖异生低下糖异生低下没有葡萄糖没有葡萄糖-6磷酸酶磷酸酶【】乳酸再利用,避免了乳酸的损失。乳酸再利用,避免了乳酸的损失。防止乳酸的堆积引起酸中毒。防止乳酸的堆积引起酸中毒。生理意义生理意义(三)促进肾脏排(三)促进肾脏排H H+、缓解酸中毒、缓解酸中毒 H H+激活磷酸烯醇式丙酮酸羧激酶激活磷酸烯醇式丙酮酸羧激酶谷氨酸、谷氨酰胺补充三羧酸循环谷氨酸、谷氨酰胺补充三羧酸循环第第 七七 节节 糖原的合成与分解糖原的合成与分解 Glycogenesis and Glycogenolysis是动物体内糖的储存形式之一,是机体能是动物体内糖的储存形式之一,是机体能迅速动用的能量储备。迅速动用的能量储备。肌肉:肌糖原,肌肉:肌糖原,180 300g,主要供肌肉收缩所需主要供肌肉收缩所需 肝脏:肝糖原,肝脏:肝糖原,70 100g,维持血糖水平维持血糖水平 糖糖 原原(glycogen)糖原储存的主要器官及其生理意义糖原储存的主要器官及其生理意义 一、糖原的合成一、糖原的合成合成部位合成部位定义定义糖原的合成糖原的合成(glycogenesis)指由葡萄糖合指由葡萄糖合成糖原的过程。成糖原的过程。组织定位:主要在肝脏、肌肉组织定位:主要在肝脏、肌肉细胞定位:胞浆细胞定位:胞浆1.6-磷酸葡萄糖的磷酸葡萄糖的生成生成葡萄糖葡萄糖 6-磷酸葡萄糖磷酸葡萄糖 ATP ADP 己糖激酶己糖激酶;葡萄糖激酶(肝)葡萄糖激酶(肝)1-1-磷酸葡萄糖磷酸葡萄糖 磷酸葡萄糖变位酶磷酸葡萄糖变位酶 6-6-磷酸葡萄糖磷酸葡萄糖 2.6-磷酸葡萄糖转变成磷酸葡萄糖转变成1-磷酸葡萄糖磷酸葡萄糖的生成的生成这步反应中磷酸基团转移的意义在于:这步反应中磷酸基团转移的意义在于:由于延长形成由于延长形成-1,4-糖苷键,所以糖苷键,所以葡萄糖分子葡萄糖分子C1上的半缩醛羟基必须活化上的半缩醛羟基必须活化,才利于与原来,才利于与原来的糖原分子末端葡萄糖的游离的糖原分子末端葡萄糖的游离C4羟基缩合。羟基缩合。半缩醛羟基与磷酸基之间形成的半缩醛羟基与磷酸基之间形成的O-P键具键具有较高的能量。有较高的能量。*UDPG可看作可看作“活性葡萄糖活性葡萄糖”,在体内充作葡萄,在体内充作葡萄糖供体。糖供体。UTP 尿苷尿苷 PPPPPi UDPG焦磷酸化酶焦磷酸化酶 3.尿苷二磷酸葡萄糖尿苷二磷酸葡萄糖的生成的生成2Pi+能量能量 1-磷酸葡萄糖磷酸葡萄糖 OHHOOHHOHHOHHOHCH2OHHP P P 尿苷二磷酸葡萄糖尿苷二磷酸葡萄糖(uridine diphosphate glucose,UDPG)OHHOOHHOHHOHHOHCH2OHHP P P尿苷尿苷P尿苷尿苷P P糖原糖原n+UDPG 糖原糖原n+1+UDP 糖原合酶糖原合酶(glycogen synthase)UDP UTP ADP ATP 核苷二磷酸激酶核苷二磷酸激酶4.糖链的延长:糖链的延长:-1,4-糖苷键式结合糖苷键式结合 *糖原糖原n 为原有的细胞内的较小糖原分子,称为为原有的细胞内的较小糖原分子,称为糖原引物糖原引物(primer),作为作为UDPG 上葡萄糖基的上葡萄糖基的接受体。接受体。糖原糖原n+UDPG 糖原糖原n+1+UDP 糖原合酶糖原合酶(glycogen synthase)5.5.糖原分枝的形成糖原分枝的形成 分分 支支 酶酶 (branching enzyme)-1,6-糖苷键糖苷键 -1,4-糖苷键糖苷键 目目 录录糖原合成酶催化反应:在糖原引物上的聚合。糖原引物(4个以上葡萄糖残基)由糖原起始合成糖原起始合成酶酶在糖原生成蛋白糖原生成蛋白上聚合形成的。UDPG是活化形式。消耗能量:2ATP糖原合酶是限速酶。二、糖原的分解二、糖原的分解*定义定义*亚细胞定位:亚细胞定位:胞胞 浆浆 *肝糖元的分解肝糖元的分解 糖原分解糖原分解(glycogenolysis)习惯上指肝糖原习惯上指肝糖原分解成为葡萄糖的过程。分解成为葡萄糖的过程。糖原糖原n n+1 +1 糖原糖原n+1-n+1-磷酸葡萄糖磷酸葡萄糖 磷酸化酶磷酸化酶1.1.1-1-磷酸葡萄糖的生成磷酸葡萄糖的生成脱枝酶脱枝酶 (debranching enzyme)2.脱枝酶的作用脱枝酶的作用 转移葡萄糖残基转移葡萄糖残基水解水解-1,6-糖苷键糖苷键 磷磷 酸酸 化化 酶酶 转移酶活性转移酶活性 -1,6糖苷糖苷酶活性酶活性 目目 录录 1-磷酸葡萄糖磷酸葡萄糖 6-磷酸葡萄糖磷酸葡萄糖 磷酸葡萄糖变位酶磷酸葡萄糖变位酶 3.1-磷酸葡萄糖转变成磷酸葡萄糖转变成6-磷酸葡萄糖磷酸葡萄糖 4.6-磷酸葡萄糖水解生成葡萄糖磷酸葡萄糖水解生成葡萄糖 葡萄糖葡萄糖-6-磷酸酶磷酸酶 (肝,肾)(肝,肾)葡萄糖葡萄糖 6-磷酸葡萄糖磷酸葡萄糖 *肌糖原的分解肌糖原的分解肌糖原分解的前三步反应与肝糖原分解过程相肌糖原分解的前三步反应与肝糖原分解过程相同,但是生成同,但是生成6-磷酸葡萄糖之后,由于肌肉组磷酸葡萄糖之后,由于肌肉组织中织中不存在葡萄糖不存在葡萄糖-6-磷酸酶磷酸酶,所以生成的,所以生成的6-6-磷磷酸葡萄糖不能转变成葡萄糖释放入血,提供血酸葡萄糖不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。糖,而只能进入酵解途径进一步代谢。肌糖原的分解与合成与肌糖原的分解与合成与乳酸循环乳酸循环有关。有关。G-6-P的代谢去路的代谢去路G(补充血糖)(补充血糖)G-6-P F-6-P(进入酵解途径)(进入酵解途径)G-1-PGn(合成糖原)(合成糖原)UDPG 6-磷酸葡萄糖内酯磷酸葡萄糖内酯(进入磷酸戊糖途径)(进入磷酸戊糖途径)葡萄糖醛酸葡萄糖醛酸(进入葡萄糖醛酸途径)(进入葡萄糖醛酸途径)小小 结结 反应部位:胞浆反应部位:胞浆 3.糖原的合成与分解总图糖原的合成与分解总图UDPG焦磷酸化酶焦磷酸化酶 G-1-P UTP UDPG PPi 糖原糖原n+1 UDP G-6-P G 糖原合酶糖原合酶 磷酸葡萄糖变位酶磷酸葡萄糖变位酶 己糖己糖(葡萄糖葡萄糖)激酶激酶 糖原糖原n Pi 磷酸化酶磷酸化酶 葡萄糖葡萄糖-6-磷酸酶(肝)磷酸酶(肝)糖原糖原n 三、糖原合成与分解的调节三、糖原合成与分解的调节 关键酶关键酶 糖原合成:糖原合成:糖原合酶糖原合酶 糖原分解:糖原分解:糖原磷酸化酶糖原磷酸化酶 这两种关键酶的重要特点:这两种关键酶的重要特点:*它们的快速调节有它们的快速调节有共价修饰共价修饰和和变构调节变构调节二二种方式。种方式。*它们都以活性、无(低)活性二种形式存它们都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸在,二种形式之间可通过磷酸化和去磷酸化而相互转变。化而相互转变。调节有调节有级联放大级联放大作用,效率高;作用,效率高;两种酶磷酸化或去磷酸化后活性变化相反;两种酶磷酸化或去磷酸化后活性变化相反;此调节为酶促反应,调节速度快;此调节为酶促反应,调节速度快;受激素调节。受激素调节。1 1.共价修饰调节共价修饰调节 腺苷环化酶腺苷环化酶 (无活性)(无活性)腺苷环化酶(有活性)腺苷环化酶(有活性)激素(胰高血糖素、肾上腺素等)激素(胰高血糖素、肾上腺素等)+受体受体 ATP cAMP PKA(无活性无活性)磷酸化酶磷酸化酶b激酶激酶 糖原合酶糖原合酶 糖原合酶糖原合酶-P PKA(有活性有活性)磷酸化酶磷酸化酶b 磷酸化酶磷酸化酶a-P 磷酸化酶磷酸化酶b激酶激酶-P Pi 磷蛋白磷酸酶磷蛋白磷酸酶-1 Pi Pi 磷蛋白磷酸酶磷蛋白磷酸酶-1 磷蛋白磷酸酶磷蛋白磷酸酶-1 磷蛋白磷酸酶抑制剂磷蛋白磷酸酶抑制剂-P 磷蛋白磷酸酶抑制剂磷蛋白磷酸酶抑制剂 PKA(有活性)(有活性)2.别构调节别构调节磷酸化酶二种构像磷酸化酶二种构像紧密型紧密型(T)和和疏松疏松型型(R),其中,其中T型型的的14位位Ser暴露,便于接受前暴露,便于接受前述的共价修饰调节。述的共价修饰调节。*葡萄糖是磷酸化酶的别构抑制剂。葡萄糖是磷酸化酶的别构抑制剂。磷酸化酶磷酸化酶 a(R)疏松型疏松型磷酸化酶磷酸化酶 a (T)紧密型紧密型葡萄糖葡萄糖 四、糖原积累症四、糖原积累症糖原累积症糖原累积症(glycogen storage diseases)是一是一类遗传性代谢病,其特点为体内某些器官组织类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。引起糖原累积症的原因是中有大量糖原堆积。引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。患者先天性缺乏与糖原代谢有关的酶类。型别型别缺陷的酶缺陷的酶受害器官受害器官糖原结构糖原结构葡萄糖葡萄糖-6-磷酸酶缺陷磷酸酶缺陷肝、肾肝、肾正常正常溶酶体溶酶体14和和16葡葡萄糖苷酶萄糖苷酶所有组织所有组织正常正常脱支酶缺失脱支酶缺失肝、肌肉肝、肌肉分支多,外周分支多,外周糖链短糖链短分支酶缺失分支酶缺失所有组织所有组织分支少,外周分支少,外周糖链特别长糖链特别长肌磷酸化酶缺失肌磷酸化酶缺失肌肉肌肉正常正常肝磷酸化酶缺陷肝磷酸化酶缺陷肝肝正常正常肌肉和红细胞磷酸果糖肌肉和红细胞磷酸果糖激酶缺陷激酶缺陷肌肉、红肌肉、红细胞细胞正常正常肝脏磷酸化酶激酶缺陷肝脏磷酸化酶激酶缺陷 脑、肝脑、肝正常正常糖原积累症分型糖原积累症分型第第 七七 节节 血血 糖糖 *血糖,血糖,指血液中的葡萄糖。指血液中的葡萄糖。血糖水平:血糖水平:即血糖浓度。是反应机体内糖代谢即血糖浓度。是反应机体内糖代谢 状况的一项重要指标。状况的一项重要指标。正常血糖浓度正常血糖浓度:3.896.11mmol/L(70 110mg/dl)高血糖:高血糖:7mmol/L,低血糖,低血糖 3.9mmol/L 血糖及血糖水平的概念血糖及血糖水平的概念 血糖水平恒定的生理意义血糖水平恒定的生理意义 保证重要组织器官的能量供应,特别是某保证重要组织器官的能量供应,特别是某些依赖葡萄糖供能的组织器官。些依赖葡萄糖供能的组织器官。脑组织脑组织不能利用脂酸,正常情况下主要依赖葡萄不能利用脂酸,正常情况下主要依赖葡萄糖供能;糖供能;红细胞红细胞没有线粒体,完全通过糖酵解获能;没有线粒体,完全通过糖酵解获能;骨髓及神经组织骨髓及神经组织代谢活跃,经常利用葡萄糖供能。代谢活跃,经常利用葡萄糖供能。血血糖糖食食 物物 糖糖 消化,消化,吸收吸收 肝糖原肝糖原 分解分解 非糖物质非糖物质 糖异生糖异生 氧化氧化分解分解 CO2+H2O 糖原合成糖原合成 肝(肌)糖原肝(肌)糖原 磷酸戊糖途径等磷酸戊糖途径等 其它糖其它糖 脂类、氨基酸合成代谢脂类、氨基酸合成代谢 脂肪、氨基酸脂肪、氨基酸 一、血糖来源和去路一、血糖来源和去路 二、血糖水平的调节二、血糖水平的调节主要调主要调节激素节激素降低血糖:胰岛素降低血糖:胰岛素(insulin)升高血糖:胰高血糖素升高血糖:胰高血糖素(glucagon)、糖皮质激素、肾上腺素糖皮质激素、肾上腺素*主要依靠激素的调节主要依靠激素的调节 (一)(一)胰岛素胰岛素 促进葡萄糖转运进入肝外细胞促进葡萄糖转运进入肝外细胞 ;加速糖原合成,抑制糖原分解;加速糖原合成,抑制糖原分解;加快糖的有氧氧化;加快糖的有氧氧化;抑制肝内糖异生;抑制肝内糖异生;减少脂肪动员。减少脂肪动员。体内唯一降低血糖水平的激素体内唯一降低血糖水平的激素 胰岛素的作用机制胰岛素的作用机制:(二)胰高血糖素(二)胰高血糖素 促进肝糖原分解,抑制糖原合成;促进肝糖原分解,抑制糖原合成;抑制酵解途径,促进糖异生;抑制酵解途径,促进糖异生;促进脂肪动员。促进脂肪动员。体内升高血糖水平的主要激素体内升高血糖水平的主要激素 胰高血糖素的作用机制:胰高血糖素的作用机制:(三)糖皮质激素(三)糖皮质激素引起血糖升高,肝糖原增加引起血糖升高,肝糖原增加 糖皮质激素的作用机制可能有两方面:糖皮质激素的作用机制可能有两方面:促进肌肉蛋白质分解,分解产生的氨基酸转促进肌肉蛋白质分解,分解产生的氨基酸转移到肝进行糖异生。移到肝进行糖异生。抑制肝外组织摄取和利用葡萄糖。抑制肝外组织摄取和利用葡萄糖。(四)肾上腺素(四)肾上腺素强有力的升高血糖的激素强有力的升高血糖的激素 肾上腺素的作用机制肾上腺素的作用机制通过肝和肌肉的细胞膜受体、通过肝和肌肉的细胞膜受体、cAMP、蛋白、蛋白激酶级联激活磷酸化酶,加速糖原分解。主要在激酶级联激活磷酸化酶,加速糖原分解。主要在应激状态下发挥调节作用。应激状态下发挥调节作用。*葡萄糖耐量葡萄糖耐量(glucose tolerence)正常人体内存在
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!