初中奥数几何讲解分享资料

上传人:无*** 文档编号:188949205 上传时间:2023-02-20 格式:PPT 页数:68 大小:720KB
返回 下载 相关 举报
初中奥数几何讲解分享资料_第1页
第1页 / 共68页
初中奥数几何讲解分享资料_第2页
第2页 / 共68页
初中奥数几何讲解分享资料_第3页
第3页 / 共68页
点击查看更多>>
资源描述
2021/3/291 2021/3/292考点归纳:1.几何基本概念与简单图形2.三角形,解直角三角形,相似形3.四边形,平面图形的初步变化4.圆2021/3/293知识梳理(1):几何的基本概念与简单图形线段与角的推理计算平行线,相交线通过面积割补练习推理2021/3/294通过面积割补法:面积割补的知识大家早已熟悉,其中“等底等高的两个三角形面积相等”是非常重要的等积变形定理。“三角形的一边中位线平分这个三角形的面积。”是它的直接推论。两直线平行的等积判定准则:如图所示,线段BC在线段m上,A,D在m的同侧,若ABC与DBC面积相等,则点A,D所在直线n必与直线m平行。ADBCnm2021/3/295知识梳理(2):三角形相似形三角形及其边角关系全等三角形,等腰三角形直角三角形与勾股定理三角形的不等关系三角形的中位线定理相似三角形三角形平分线性质定理及其应用梅内劳斯定理于塞瓦定理及其应用2021/3/296梅内劳斯定理 梅内劳斯定理:X,Y,Z分别是 ABC三边所在的直线BC,CA,AB上的点,则X,Y,Z共线的充分必要条件是 1YCAYZABZXBCX ABCXYZabcABCXYZabc由定理可得以上两种图形:1.X,Y,Z三点之中只有一点在三角形的延长线上,而其它两点在三角形的边上2.X,Y,Z三点分别都在三角形三边的延长线上2021/3/297证明定理:证明 (1)必要性,即若X,Y,Z三点共线,则1YCAYZABZXBCX设A,B,C 到直线XYZ的距离分别是a,b,c则bcXBCXabZABZcaYCAY 三式相乘及得 1caabbcYZAYZABZXBCX(2)充分性 即若1YCAYZABZXBCX则X,Y,Z三点共线设直线XZ交AC与1Y,由此证必要性得:2021/3/298111CYAYZABZXBCX1YCAYZABZXBCXYCAYCYAY11又固已知得:因为1Y1Y和Y或同在AC线段上,或同在AC边的延长线上,并且并且能分得比值相等,所以和Y必重合为一点,也就是X,Y,Z三点共线。梅内劳斯定理的应用:1.求共线线段的比2.证明三点共线2021/3/299赛瓦定理 连接三角形一顶点和对边上一点的线段叫做这个三角形的一条塞瓦线。赛瓦定理:从ABC的每个顶点出发作一条赛瓦线,AX,BY,CZ.则AX,BY,CZ共点的充要条件是1ZBAZYACYXCBXABCXYZC1 B1 2021/3/2910赛瓦定理实质上包含充分性和必要性两个命题:充分性命题 设ABC的三条赛瓦线AX,BY,CZ共点,则必有1ZBAZYACYXCBX1ZBAZYACYXCBX必要性命题 设ABC中,AX,BY,CZ是三条赛瓦线,如果则AX,BY,CZ三线共点。赛瓦定理的应用 1.利用必要性可证明三线共点问题。2.利用充分性可以证明线段之间的比例式或乘积式。2021/3/2911知识梳理(3):四边形平面图形的初步变化矩形,菱形,正方形,多边形平行四边形及其判定梯形的判定及中位线定理平移,轴对称,图形的旋转面积问题与面积方法2021/3/2912知识梳理(4):圆垂径定理及其应用圆周角定理及其应用圆内接四边形与四点共圆圆幂定理及其应用点与圆的位置关系直线与圆的位置关系圆与圆的位置关系和圆有关的比例线段三角形中的四心正多边形和圆几何中的定值和最值2021/3/2913垂径定理垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。ABCDOrOCAB 则AD=AB AOD=BOD其中,OB叫做弦AB的弦心距离。应用:通过垂径定理来确定圆的圆心与半径,从而确定圆。2021/3/2914圆幂定理相交弦定理与切割弦定理统称为圆幂定理。相交弦定理 圆的弦相交与圆内一点,各弦被点内分成的两条线段的乘积相等。图1所示,有PAPB=PCPD切割弦定理 圆的延长线相交与圆外一点,各被这点外分成的两条线段的乘积相等,并且等于这点到的切线的平方。图1所示,有PAPB=PCPD=PCPC2021/3/2915ABCDP图1ABPCDE图2应用:圆幂定理多用来证明线段的乘积式与比例式,或者用于计算圆中的线段。圆幂定理的逆定理多用来证明四点共圆及圆与直线相切。2021/3/2916线段与角的求解1.如图所示,OM是AOB的平分线,射线OC在BOM内,ON是BOC的平分线。已知AOC=80,求MON的度数。OABCMN2021/3/2917解:因为OM是AOB的平分线,所以AOM=BOM(角平分线的定义)又ON是BOC的平分线所以BON=CON 所以BOC=2NOC(*)由图可知AOM+COM=AOC=80 所以BOM+COM=80(等量代换)但BOM=BOC+COM(全量等于各部分的和)所以BOC+COM+COM=80 即BOC+2COM=80 将(*)代入得2NOC+2COM=80 即NOC+COM=40 所以MON=402021/3/29182.如图所示,C是线段AB上一点,D是线段CB的中点,已知图中所有线段的长度之和等于23cm,线段AC与线段BC的长度都是正整数,求线段AC的长度是多少cm?ABCD2Y解:设线段AC的长为x,CB的长为y,则x,y均为正整数。在图中所有线段及其长度表示如下:AC=x,AD=x+AB=x+y,CD=,DB=CB=2Y2Y2021/3/2919由所有线段的和等于23cm,列出方程:x+(x+)+(x+y)+y+=23 2Y2Y2Y即3x+=23.(*)27 Y由于x,y均为正整数,根据(*)式,可知 为正整数,从而y为偶数。27 Y当y6时,3x+23,所以y只能取2或4.27 Y当y=2时,由 3x+=23,求出x=不是整数,所以y2,因此,只能y=4,进而x=327 Y316即线段AC的长度是3.2021/3/2920平行线和相交线3.如图所示,CDAF,CDE=BAF,ABBC,C=124,E=80,求F的度数。AFBCDE2021/3/2921解:如图过B做BPCD.CD AF,BP AF 由BPCD,C+CBP=180 CBP=180-C=180-124=56 已知ABBC,CBA=90 所以PBA=90-56=34 BP AF,A=180-C=180-34=146=CDF 过E做EQCD.由于CD AF,得EQ AF 则DEQ=180-CDE=180-146=34 2021/3/2922又已知DEF=80,所以QEF=80-34=46因为EQ AF,则F+QEF=180所以F=180-QEF=180-46=1342021/3/2923面积割补法4.四边形ABCD的面积为S,点E,F,M,N分别为 AB,DC的三等分点,求证:四边形EFNM 的面积等于S31ABCDMNEF2021/3/2924ABDDEBSS32DNBDEBDEBNSSSCBDABDSS32SSABCD3232DNEMNESS21EBNDNESS21SSSDEBN31322121证明:连接BD,DE,BNCBDDNBSS32二式相加得:连接EN,可知EBNEFNSS21相加得EFNMNEEFNMSSS2021/3/29255.证明:等边三角形内一点到三边距离之 和等于定值,这个定值是这个等边三角 形的高。ABCDEFH2021/3/2926ABCCPABPCAPBSSSSAHBCPFACPEBCPDAB21212121ahahahah21212121321hhhh3211h证明:已知ABC中,AB=BC=CA=a,P为ABC内一点,PDAB于D,PE BC于E,PF AC于F,AH BC于H记,PD=,PE=,PF=,AH=h ,2h3h联接PA,PB,PC.则可得则即即 PD+PF+PE=h2021/3/29272021/3/2928梅涅劳斯梅涅劳斯(Menelaus)定理(梅氏线)定理(梅氏线)ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是 塞瓦塞瓦(Ceva)定理(塞瓦点)定理(塞瓦点)ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是1RBARQACQPCBP1RBARQACQPCBP2021/3/2929例1.(梅氏定理)过ABC的重心G的直线分别交AB、AC于E、F,交CB于D。求证:【分析】连结并延长AG交BC于M,则M为BC的中点。DEG截ABMDGF截ACM1FACFEABE1DBMDGMAGEABE1DCMDGMAGFACF122MDGMMDGMMDAGDCDBGMFACFEABE2021/3/2930例2.(塞瓦定理)设X、Y、Z分别是ABC的边BC、CA、AB上的点,若 则AX、BY、CZ三线共点.解:设与交于点,连、设 易知,(),、共线、共点2021/3/29311.已知:二次方程mx2(m2)x+(m1)=0两个不相等的实数根,恰好是直角三角形两个锐角的正弦值.求:这个直角三角形的斜边与斜边上的高的比.ABCD2021/3/2932解:作RtABC斜边上的高CD。sinA和 sinB是方程的两根,根据韦达定理,得 BCCDBAsin,ACCDsin则 14AB.41ABCDABCDCD381087.1212sinsin221413.41sinsin2;2sinsin1222222mmCDmmBCCDACCDmmmmmmmmBAmmBCCDACCDmmBAmmBA)得由(或,得即得,)即(当m=1 时,没有意义;当m=-8时,即直角三角形斜边与斜边上的高的比是32 9.932ABCD2021/3/29332.如图已知:ABC中,AD是角平分线BECF,M、N分别是BC和EF的中点。求证:MNAD4321ABCDEFMNP2021/3/2934证明一:连结EC,取EC的中点P,连结PM、PN,则有MPBE,NPCF,BECF,MPNP,2MPN-18021180MPN2MPN-180 43EBCBFCEBACECBBNPECFNPBEMP21,21 2=3MNAD4321ABCDEFMNP2021/3/2935证明二:连结并延长EM到G,使MGME连结CG,FG,则MNFG,MCG MBECGBECF,BBCGABCG,BACFCG180CAD (180FCG)CFG (180FCG)=CAD MNAD2121MjABCGDEFN2021/3/2936证明:作DEAC,DFBC,交BA或延长线于点E、F,ACDE和BCDF都是平行四边形DEAC,DFBC,AECDBF作DHAB于H,根据勾股定理AH ,FH ADBC,ADDF,AHFH,EHBHDE ,BDDEBD,即ACBD3.已知梯形ABCD中,ABCD,ADBC。求证:ACBD22-DHAD22-DHDF22EHDH2BHDH jABCDEFH2021/3/29374.已知:ABC中,ABAC,点P在中位线MN上,BP,CP的延长线分别交AC,AB于E,F.求证:有定值。CE1BF1catPFENMABCF2021/3/2938证明:设MP为t,则NP=at.MNBC,21cactataCEabtaCEbataCEbCEataBFactaBFcatacBFat32121CE1BF1121212121212112121BF21.CENEBCNP,BFMFBCMP;即c 是定线段,是定值.,即有定值 .c3CE1BF1c3catPFENMABCF2021/3/29395.已知:ABC中,,求:的值.31CACFBCBEABADABCDEFSS解:ADF和ABC有公共角A,31S92SS92S92ACABAC32AB31ACABAFADSABCDEFABCCFEABCBEDABCADF,同理得,SSS)时,(本题可推广到,当mnpnpmpmnpnmmnpSpCACFnBCBEmABADABCDEFS111ABCDEF2021/3/29406如图,已知ABC中,AB=AC,D是BC上一点,若BDE=CDF,E、F分别为AB、AC上的点。求证:.EDCBDFSS解:如图,过E作EMBC于M,过F作FNBC于N,AB=ACABC=ACB BDF=CDFBDECDF,DE:DF=BD:CD又 EMD=90=FNDBDE=CDFMDENDFDE:DF=EM:FNBD:CD=EM:FNBDFN=CDEM即EDCBDFSS2021/3/29412021/3/29421.四边形在竞赛中的主要知识点2.四边形的一般解题方法2021/3/2943四边形包括平行四边形,矩形,梯形,菱形和不规则四边形 以下箭头可以表示上述各概念间的从属关系:2021/3/2944定义:两组对边分别平行的四边形称为平行四边形。性质:对角分别相等;对边分别相等;对角线互相平行;对角线的平方和等于四条边的平方之和。(可用勾 股定理证明)推论:三角形两边的平方和等于第三边上中线的平方与第 三边之半的平方和的2倍。欧拉定理:四边形各边的平方之和等于其对角线的平方和 加上两对角线中点连结线段的平方之4倍。判定定理:若有下列条件之一成立,四边形即为平行四边 形 对角分别相等;对边分别相等;一组对 边平行且相等;对角线互相平分;对角线 的平方和等于四边的平方和2021/3/2945定义:一个四边形中如果有一组对边平行,这个四边形称 为广义梯形。一个四边形中如果一组对边平行,另一组对边不平 行,这个四边形称为狭义梯形。梯形的中位线定理:梯形两腰中点的连线(中位线)平行 于底边且等于两底和的一半。注:有关梯形的问题,常通过引高线、平移腰或对角线,将梯形的问题转化为三角形的问题。这是解决梯形问 题常用的添设辅助线的方法。2021/3/2946定义:有一组邻边相等并且有一个角是直角的平 行四边形称为正方形。性质:四个角都是直角,四条边都相等,对角线 相等且互相垂直平分,每一条对角线平分 一组对角。注:正方形问题常转化为三角形的问题来解决,在解题时,利用正方形的性质构造直角三角形和等边三角形,再利用勾股定理等解决问题。2021/3/2947托勒密托勒密(Ptolemy)定理定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。定理证明、推论定理证明、推论http:/ 关三角形的问题:例:ABCD中,DEAB于E,BM=MC=DC求证:EMC=3BEM 分析 由于EMC是BEM的外角,因EMC=B+BEM从而,应该有B=2BEM,这个论断在BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决。利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样B=MCF及BEM=F,因此,只要证明MCF=2F即可不难发现,EDF为直角三角形(EDF=90)及M为斜边中点,我们的证明可从这里展开2021/3/2949证明:证明:延长EM交DC的延长线于F,连接DM 由于CM=BM,F=BEM,MCF=B,所以MCF MBE(AAS),所以M是EF的中点由于ABCD及DEAB,所以,DEFD,三角形DEF是直角三角形,DM为斜边的线,由直角三角形斜边中线的性质知F=MDC,又由已知MC=CD,所以MDC=CMD,则MCF=MDC+CMD=2F 从而EMC=F+MCF=3F=3BEM2021/3/2950第二类第二类是利用四点共圆构造隐含的辅助圆解题,这一类虽然涉及较少,在大题中应用不多,但作为一种解题方法,对于一些选择填空题,可以让学生更加简便地得出答案。例3:凸四边ABCD,ABC=60,BAD=BCD=90,AB=2,CD=1,对角线AC、BD交于点O,求sinAOB的值。分析:由BAD=BCD=90,可知A、B、C、D四点共圆。欲求sinAOB,联想到托勒密定理,只需求出BC、AD即可。2021/3/2951解:因BAD=BCD=90,所以A、B、C、D四点共圆延长BC、AD交于P,则ADP=ABC=60设AD=x,有AP=,DP=2x由割线定理得:()=2x(1+2x)解得AD=,BC=BP=由托勒密定理有BD CA=()()+2 1=又 =+=故sinAOB=x3x32 2134 3423223212310263615 ABCDSABDSBCDS2332021/3/2952第三类第三类是补形法。利用辅助线将四边形补充为平行四边形或三角形来解决问题。例:如图,在四边形ABCD中,B135,C120,AB=,BC=,CD,则AD边的长为多少2021/3/2953如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F由已知可得BE=AE=,CF ,DF2,于是 EF4 过点A作AGDF,垂足为G在RtADG中,根据勾股定理得AD =2021/3/2954例:在梯形ABCD中,ADBC(BCAD),BC=CD=12,,若AE=10,则CE的长为 .90D解:延长DA至M,使BMBE.过B作BGAM,G为垂足.易知四边形BCDG为正方形,所以BC=BG.又 ,RtBEC RtBMG.BM=BE,ABE ABM,AM=AE=10.设CE=x,则AG=,AD=,DE=.在RtADE中,即 ,解之,得 ,.故CE的长为4或6.x10 xx2)10(12x12GBMCBE22)12()2(100 xx024102xx222DEADAE45ABMABE41x62x2021/3/2955第四类第四类是采用旋转的方法。将图形旋转,寻觅图形间的联系,汇聚已知条件和结论,才能达到解决问题的目的。解:将直角ABM绕点B顺时针旋转至CBE处,则BE=BM。,N、C、E共线,所以NE=NC+CE =NC+AM由题意得:AM+CN=MN所以NE=MN又因为BE=BM,BN=BN所以BMN BEN所以所以90MBENBEMBN4521MBEMBN90MBENBEMBN4521MBEMBN例:正方形ABCD中,M、N分别在AD、DC边上,且MDN的周长等于正方形的周长的一半,求 的度数。MBN2021/3/2956第五类第五类是涉及动态几何定值的题目。这一类题目在大题中非常常见,具有一定的难度,也是考生需要重点理解掌握的知识。例:平面上有两个边长相等的正方形ABCD,ABCD,且正方形ABCD的顶点A在正方形ABCD的中心。当正方形ABCD绕A转动时,两个正方形的重合部分的面积必然是一个定值。这个结论对吗?证明你的判断。2021/3/2957解:结论正确,证明如下:如图,当ABCD的边与ABCD的边对应平行时,易知重合部分面积为正方形面积的当转动到实线正方形ABCD位置时,易证 ,所以两个正方形重合部分面积仍为正方形面积的,是个定值。41EGAFHA2021/3/2958圆的有关 性质垂经定理(线、角、弧等价关系)圆心角、弧、弦、弦心距间的关系与圆有关见得关系直线与圆的位置关系切线的性质定理切线长定理弦切角定理圆幂定理(线间的关系)圆与圆的位置关系相交两圆的性质定理相切两圆的性质定理两圆的公切线定理圆考点总结四点共圆问题2021/3/2959常考点知识补充.四点共圆判定定理:a.到一个定点的距离相等的所有的点在同一个圆上(圆的定义).b.一组对角互补的四边形顶点在同一圆上(包括其推论).c.同底同侧顶角相等的三角形顶点共圆d.切割线定理的逆定理e.相交弦定理的逆定理 推论:同斜边的直角三角形顶点共圆(斜边就是圆的直径).西姆松及其逆定理:过三角形外接圆上任一点作三边(或所在直线)的垂线,则三垂足共线;反之,若自一点作三角形三边所在直线的垂线足共线,则该点在三角形的外接圆上.如下图2021/3/2960 直线与圆的关系有关问题 例题1.如图,设ABC是直角三角形,点D在斜边BC上,BD4DC。已知圆过点C且与AC相交于F,与AB相切于AB的中点G。求证:ADBF(全国联赛题)2021/3/2961 分析:已知条件中有切线自然容易联想到应用切割线定理得到有关线段间的比例再根据BD=4DC 易联想要做一条平行线。关键是应用线的转化。证明:如图,作DEAC于E,则ACAE,AGED。由切割线定理有:AG2AFAC,ED2AFAE,5ED2AFAE,ABEDAFAE,BAFAED,ABFEAD,而EADDAB90,ABFDAB90,小结:本题主要考察了切割线定理的 应用和线间的转化进而转化为角的转化2021/3/2962 两个圆的关系有关问题 例题2.圆O1与O2圆外切于点A,两圆的一条外公切线与圆O1相切于点B,若AB与两圆的另一条外公切线平行,则圆O1与圆O2的半径之比为()(2002年全国联赛题)(A)2:5 (B)1:2 (C)1:3 (D)2:3 小结:本题选C。综合考察了圆的切线的性质平行线的性质及相切两圆的性质。BAO1O22021/3/2963四点共圆问题例题3.O过ABC顶点A,C,且与AB,BC交于K,N(K与N不同).ABC 外接圆和BKN外接圆相交于B和 M.求证:BMO=90.(IMO试题)2021/3/2964 分析:这道国际数学竞赛题的图形很复杂,但只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的.证明:连接OC,OK,MC,MK,延长BM到G.易得GMC=BAC=BNK=BMK.而COK=2BAC=GMC+BMK=180-CMK,COK+CMK=180C,O,K,M四点共圆.在这个圆中,由 OC=OK OC=OKOMC=OMK.但GMC=BMK,故BMO=90.2021/3/2965 圆幂定理的应用 例题4.如图,P是 O外一点,PA和PB是 O的切线,A,B为切点,P O与AB交于点M,过M任作 O的弦CD求证:CPO=DPO(全国初中数学联赛题)证明:连结OA,则OAPA 又 AM=MB,AB OPOMMP=AMAM 又MCMD=MAMB=AMAM OMMP=MCMD O.D.P.C四点共圆 又OC=OD CPO=DPO 小结:主要考察了切线长定理 相交弦定理及其逆定理并应用 了圆的性质。2021/3/2966 添加辅助圆问题 例题5.已知:点O是ABC的外心,BE,CD是高.求证:AODE(全国联赛题)证明:延长AO交ABC的外接圆于F,连接BF.O是ABC的外心 AF是ABC外接圆的直径,ABF=Rt.BE,CD是高,BDC=CEB=Rt.B,C,E,D四点共圆 ADE=ECB=F.AGD=ABF=Rt,即AODE.小结:添加辅助圆使问题迎刃而解。变形提示:若H,L 分别是DE,BC中点,证明:AOHL。GOCBADFE2021/3/2967 补充综合题 例6 ABC的BC边上的高AD的延长线交外接圆于 P,作PEAB于E,延长 ED交AC延长线于F。求证:BCEF=BFCE+BECF。2021/3/2968 分析:应用托勒密定理讲结论转化为 证明B,E,C,F四点共圆;再应用西姆松定理。证明:连结PF,由西姆松定理知PFAC 又AD BC,则D,P,F,C四点共圆,则有,AD*AP=AC*AF.同理有AD*AP=AE*AB 所以,AC*AF=AE*AB,则E,B,F,C 四点共圆,由托勒密定理得 BCEF=BFCE+BECF谢谢赏析!
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!