汽车发动机工作原理视频演示很赞很直观

上传人:feng****heng 文档编号:187308798 上传时间:2023-02-13 格式:DOCX 页数:21 大小:23.66KB
返回 下载 相关 举报
汽车发动机工作原理视频演示很赞很直观_第1页
第1页 / 共21页
汽车发动机工作原理视频演示很赞很直观_第2页
第2页 / 共21页
汽车发动机工作原理视频演示很赞很直观_第3页
第3页 / 共21页
点击查看更多>>
资源描述
汽车发动机工作原理视频演示!很赞很直观!有不少朋友在车图腾后台留言,想了解汽车发动机是怎 么工作的。之前,暮四给朋友们陆续分享过一些图文资料。 今天,暮四找到了视频版的,更加直观一些,希望对亲有所 帮助。因为是视频,建议在 wifi 状态下阅读。下面这个是柴 油发动机工作原理:还有喷气发动机的工作原理:当然除了 视频,暮四还把之前的一些资料一起放出来了:汽车发动机 图解!很详细,也不难懂 汽车动力的来源 汽车的动力源泉就是发动机,而发动机的动力则来源于气缸 内部。发动机气缸就是一个把燃料的内能转化为动能的场 所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推 动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转 运动,再通过变速器和传动轴,把动力传递到驱动车轮上, 从而推动汽车前进。气缸数不能过多一般的汽车都是以四缸和六缸发动机居多,既然发动机 的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实 不然,随着汽缸数的增加,发动机的零部件也相应的增加, 发动机的结构会更为复杂,这也降低发动机的可靠性,另外 也会提高发动机制造成本和后期的维护费用。所以,汽车发 动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16 型发动机只运用于少数的高性能汽车上。V型发动机结 构其实 V 型发动机,简单理解就是将相邻气缸以一定 的角度组合在一起,从侧面看像 V 字型,就是 V 型发动机。 V 型发动机相对于直列发动机而言,它的高度和长度有所减 少,这样可以使得发动机盖更低一些,满足空气动力学的要 求。而V型发动机的气缸是成一个角度对向布置的,可以抵 消一部分的震动,但是不好的是必须要使用两个气缸盖,结 构相对复杂。虽然发动机的高度减低了,但是它的宽度也相 应增加,这样对于固定空间的发动机舱,安装其他装置就不 容易了。 W型发动机结构将V型发动机两侧的气缸再进行小角度的错开,就是W 型发动机了。W型发动机相对于V型发动机,优点是曲轴可 更短一些,重量也可轻化些,但是宽度也相应增大,发动机 舱也会被塞得更满。缺点是W型发动机结构上被分割成两个 部分,结构更为复杂,在运作时会产生很大的震动,所以只 有在少数的车上应用。 水平对置发动机结构 水平对置发动机的相邻气缸相互对立布置(活塞的底部向外侧),两气缸的夹角为180,不过它与180 V型发动 机还是有本质的区别的。水平对置发动机与直列发动机类 似,是不共用曲柄销的(也就是说一个活塞只连一个曲柄销), 而且对向活塞的运动方向是相反的,但是 180V 型发动机 则刚好相反。水平对置发动机的优点是可以很好的抵消振 动,使发动机运转更为平稳;重心低,车头可以设计得更低, 满足空气动力学的要求;动力输出轴方向与传动轴方向一致, 动力传递效率较高。缺点:结构复杂,维修不方便;生产工艺 要求苛刻,生产成本高,在知名品牌的轿车中只有保时捷和 斯巴鲁还在坚持使用水平对置发动机。发动机为什么能 源源不断提供动力发动机之所以能源源不断的提供动力,得 益于气缸内的进气、压缩、做功、排气这四个行程的有条不 紊地循环运作。 进气行程,活塞从气缸内上止点移动至下止点时,进气门打 开,排气门关闭,新鲜的空气和汽油混合气被吸入气缸内。 压缩行程,进排气门关闭,活塞从下止点移动至上止点,将 混合气体压缩至气缸顶部,以提高混合气的温度,为做功行 程做准备。 做功行程,火花塞将压缩的气体点燃,混合气体在气缸内发 生“爆炸”产生巨大压力,将活塞从上止点推至下止点,通 过连杆推动曲轴旋转。 排气行程,活塞从下止点移至上止点,此时进气门关闭,排 气门打开,将燃烧后的废气通过排气歧管排出气缸外。发动机动力源于爆炸发动机能产生动力其实是源于气缸内的“爆炸力”。 在密封气缸燃烧室内,火花塞将一定比例汽油和空气的混合 气体在合适的时刻里瞬间点燃,就会产生一个巨大的爆炸 力,而燃烧室是顶部是固定的,巨大的压力迫使活塞向下运 动,通过连杆推动曲轴,在通过一系列机构把动力传到驱动 轮上,最终推动汽车。 火花塞是“引爆”高手 要想气缸内的“爆炸”威力更大,适时的点火就非 常重要了,而气缸内的火花塞就是扮演“引爆”的角色。其 实火花塞点火的原理有点类似雷电,火花塞头部有中心电极 和侧电极(相于两朵带相反极性离子的云),两个电极之间有 个很小的间隙(称为点火间隙),当通电时能产生高达 1 万多 伏的电火花,可以瞬间“引爆”气缸内的混合气体。 进气门要比排气门大 要想气缸内不断的发生“爆炸”,必须不断的输入 新的燃料和及时排出废气,进、排气门在这过程中就扮演了 重要角色。进、排气门是由凸轮控制的,适时的执行“开门” 和“关门”这两个动作。为什么看到的进气门都会比排气门 大一些呢?因为一般进气是靠真空吸进去的,排气是挤压将废 气推出,所以排气相对比进气容易。为了获得更多的新鲜空 气参与燃烧,因而进气门需要弄大点以获得更多的进气。 气门数不宜过多如果发动机有多个气门的话,高转速时进气量大、 排气干净,发动机的性能也比较好(类似一个电影院,门口多 的话,进进出出就方便多了)。但是多气门设计较复杂,尤其 是气门的驱动方式、燃烧室构造和火花塞位置都需要进行精 密的布置,这样生产工艺要求高,制造成本自然也高,后期 的维修也困难。所以气门数不宜过多,常见的发动机每个气 缸有 4 个气门(2 进 2 出)。前面已经了解过发动机的基本构造和动力来源。其实发 动机的实际运转速度并不是一成不变的,而是像人跑步一 样,时而急促,时而平缓,那么调节好自己的呼吸节奏尤其 重要,下面我们就来了解一下发动机是怎样“呼吸”的。 凸轮轴的作用 简单来说,凸轮轴是一根有多个圆盘形凸轮的金属 杆。这根金属杆在发动机工作中起到什么作用?它主要负责 进、排气门的开启和关闭。凸轮轴在曲轴的带动下不断旋转, 凸轮便不断地下压气门(摇臂或顶杆),从而实现控制进气门 和排气门开启和关闭的功能。 OHV、OHC、SOHC、DOHC 代表什么意思 ? 在发动机外壳上经常会看到 SOHC、DOHC 这些字母, 这些字母到底表示的是什么意思?OHV是指顶置气门底置凸 轮轴,就是凸轮轴布置在气缸底部,气门布置气缸顶部。OHC 是指顶置凸轮轴,也就是凸轮轴布置在气缸的顶部。如果气缸顶部只有一根凸轮轴同时负责进、排气门 的开、关,称为单顶置凸轮轴(SOHC)。气缸顶部如果有两根 凸轮轴分别负责进、排气门的开关,则称为双顶置凸轮轴 (DOHC)。底置凸轮轴的凸轮与气门摇臂间需要采用一根金 属连杆连接,凸轮顶起连杆从而推动摇臂来实现气门的开 合。但过高的转速容易导致顶杆折断,因此这种设计多应用 于大排量、低转速、追求大扭矩输出的发动机。而凸轮轴顶 置可省略顶杆简化了凸轮轴到气门的传动机构,更适合发动 机高速时的动力表现,顶置凸轮轴应用比较广泛。 配气机构的作用配气机构主要包括正时齿轮系、凸轮轴、气门传动 组件(气门、推杆、摇臂等),主要的作用是根据发动机的工 作情况,适时的开启和关闭各气缸的进、排气门,以使得新 鲜混合气体及时充满气缸,废气得以及时排出气缸外。 什么是气门正时?为什么需要正时?所谓气门正时,可以简单理解为气门开启和关闭的时 刻。理论上在进气行程中,活塞由上止点移至下止点时,进 气门打开、排气门关闭;在排气行程中,活塞由下止点移至上 止点时,进气门关闭、排气门打开。那为什么要正时呢?其实在实际的发动机工作中,为 了增大气缸内的进气量,进气门需要提前开启、延迟关闭; 同样地,为了使气缸内的废气排的更干净,排气门也需要提 前开启、延迟关闭,这样才能保证发动机有效的运作。 可变气门正时、可变气门升程又是什么 ?发动机在高转速时,每个气缸在一个工作循环内,吸气 和排气的时间是非常短的,要想达到高的充气效率,就必须 延长气缸的吸气和排气时间,也就是要求增大气门的重叠角; 而发动机在低转速时,过大的气门重叠角则容易使得废气倒 灌,吸气量反而会下降,从而导致发动机怠速不稳,低速扭 矩偏低。固定的气门正时很难同时满足发动机高转速和低 转速两种工况的需求,所以可变气门正时应运而生。可变气 门正时可以根据发动机转速和工况的不同而进行调节,使得 发动机在高低速下都能获得理想的进、排气效率。影响发动机动力的实质其实与单位时间内进入到 气缸内的氧气量有关,而可变气门正时系统只能改变气门的 开启和关闭的时间,却不能改变单位时间内的进气量,变气 门升程就能满足这个需求。如果把发动机的气门看作是房子 的一扇“门”的话,气门正时可以理解为“门”打开的时间 气门升程则相当于“门”打开的大小。 丰田 VVT-i 可变气门正时系统丰田的可变气门正时系统已广泛应用,主要的原理是在 凸轮轴上加装一套液力机构,通过 ECU 的控制,在一定角 度范围内对气门的开启、关闭的时间进行调节,或提前、或 延迟、或保持不变。凸轮轴的正时齿轮的外转子与正时链条(皮带)相 连,内转子与凸轮轴相连。外转子可以通过液压油间接带动 内转子,从而实现一定范围内的角度提前或延迟。 本田 i-VTEC 可变气门升程系统本田的 i-VTEC 可变气门升程系统的结构和工作原理并 不复杂,可以看做在原来的基础上加了第三根摇臂和第三个 凸轮轴。它是怎样实现改变气门升程的呢?可以简单的理解 为,通过三根摇臂的分离与结合一体,来实现高低角度凸轮 轴的切换,从而改变气门的升程。当发动机处于低负荷时,三根摇臂处于分离状态, 低角度凸轮两边的摇臂来控制气门的开闭,气门升程量小; 当发动机处于高负荷时,三根摇臂结合为一体,由高角度凸 轮驱动中间摇臂,气门升程量大。 宝马 Valvetronic 可变气门升程系统宝马的 Valvetronic 可变气门升程系统,主要是通过 在其配气机构上增加偏心轴、伺服电机和中间推杆等部件来 改变气门升程。当电动机工作时,蜗轮蜗杆机构会驱动偏心 轴发生旋转,再通过中间推杆和摇臂推动气门。偏心轮旋转 的角度不同,凸轮轴通过中间推杆和摇臂推动气门产生的升 程也不同,从而实现对气门升程的控制。 奥迪 AVS 可变气门升程系统奥迪的AVS可变气门升程系统,主要通过切换凸轮 轴上两组高度不同的凸轮来实现改变气门的升程,其原理与 本田的i-VTEC非常相似,只是AVS系统是通过安装在凸轮 轴上的螺旋沟槽套筒,来实现凸轮轴的左右移动,进而切换 凸轮轴上的高低凸轮。发动机处于高负荷时,电磁驱动器使凸轮轴向 右移动,切换到高角度凸轮,从而增大气门的升程;当发动机 处于低负荷时,电磁驱动器使凸轮轴向左移动,切换到低角 度凸轮,以减少气门的升程。随着对能源和环保的要求日趋严格,发动机也要不断升 级进化,才能满足人们的需求。如时下的“缸内直喷”、“分 层燃烧”、“可变排量”等名词相信大家并不陌生,到底它们 的工作原理是怎样的?下面我们一起来了解一下吧。 活塞、曲轴是最“累”的?发动一运转,活塞的“头上”就要顶着高温高压, 不停地做高速上下运动,工作环境非常严苛。可以说活塞是 发动机“心脏”,因此活塞的材质制作精度都有着很高的要 求。而被活塞踩在“脚下”的曲轴也不好受,要不停地 做高速旋转运动。曲轴每分钟要旋转数千次,肩负着带动机 油泵、发电机、空调压缩机、凸轮轴等机构的艰巨任务,是 发动机动力的中转轴,因此它也比较“壮”。 直线运动如何变旋转运动 ?我们都知道,气缸内活塞做的是上下的直线运动,但要 输出驱动车轮前进的旋转力,是怎样把直线运动转化为旋转 运动的呢?其实这个与曲轴的结构有很大关系。曲轴的连杆轴 与主轴是不在同一直线上的,而是对立布置的。这个运动原理其实跟我们踩自行车非常相似,我们 两个脚相当于相邻的两个活塞,脚踏板相当于连杆轴,而中 间的大飞轮就是曲轴的主轴。我们左脚向下用力蹬时(活塞做 功或吸气向下做运动),右脚会被提上来(另一活塞压缩或排 气做向上运动)。这样周而复始,就有直线运动转化为旋转运 动了。 发动机飞轮为什么这么大 ?都知道活塞的四个行程中,只有一次是做功的,进气、 压缩、排气三个行程都需要一定的力量支持才能顺利进行, 而飞轮在这个过程中就帮了很大的忙。飞轮之所以做得比较大,主要是为了存储发动机的 运动能量,这样才能保证曲轴平稳的运转。其实这个原理跟 我们小时候的陀螺玩具差不多,我们用力旋转后,它能保持 相当长时间的转动。 发动机的排量、压缩比活塞从上止点移动到下止点所通过的空间容积称为气 缸排量;发动机所有气缸排量之和称为发动机排量,通常用升(L)来表示。如我们平时看到的汽车排量,1.6L、2.0L、2.4L 等等。其实气缸的容积是个圆柱体,不太可能正好是整升数 的,如 1998mL 、 2397mL 等数字,可以近似标示为 2.0L、2.4L。压缩比,即发动机混合气体被压缩的程度,气缸总 容积与压缩后的气缸容积(即燃烧室容积)之比来表示。为什 么要对气缸的混合气体压缩呢?这样可以让混合气体更容易、 更快速的完全燃烧,从而提高发动机的性能和效率。 什么是可变排量?如何改变排量的?通常为了获得大的动力,需要把发动机的排量增大,如 8 缸、 12 缸发动机动力就非常强劲。但付出的代价就是油耗 增加。尤其是在怠速等工况不需要大动力输出时,燃油就白 白浪费掉了,而可变排量就可以很好地解决矛盾。可变排量,顾名思义就是发动机的排量并不是固定 的(也就是说参加工作的气缸数量是发生变化的),而是可以 根据工况需要而发生改变。那发动机怎么来实现排量的改变 的?简单的说,就是通过控制进气门和油路来开启或关闭某个 气缸的工作。比如一台6 缸可变排量发动机,可以根据实际 工况需要,实现3缸、 4 缸、 6 缸三种工作模式,以降低油 耗,提高燃油的经济性。如大众 TSI EA211 发动机采用了可变排量(气缸关 闭)技术,主要是通过电磁控制器和安装在凸轮轴上的螺旋沟 槽套筒来实现气门的关闭与开启。 什么是缸内直喷 ? 有什么优势?我们知道,传统的发动机是在进气歧管中喷油再与空气 形成混合气体,最后才进入到气缸内的。在此过程中,因为 喷油嘴里燃烧室还有一定距离,微小的油粒会吸附在管道壁 上,而且汽油与空气的混合受进气气流和气门关闭影响较 大。而缸内直喷是直接将燃油喷射在缸内,在气缸内直 接与空气混合。ECU可以根据吸入的空气量精确地控制燃油 和喷射量和喷射时间,高压的燃油喷射系统可以是使油气的 雾化和混合效率更加优异,使符合理论空燃比的混合气体燃 烧更加充分,从而降低油耗,提高发动机的动力性能。这套由柴油发动机衍生而来的科技目前已经大量 使用在包含大众(含奥迪)、宝马、梅赛德斯-奔驰、通用等车 系上。 什么是均质燃烧?分层燃烧?所谓“均质燃烧”可以理解为普通的燃烧方式,即燃料 和空气混合形成一定浓度的可燃混合气,整个燃烧室内混合 气的空燃比是相同的,经火花塞点燃燃烧。由于混合气形成 时间较长,燃料和空气可以得到充分的混合,燃烧更均匀, 从而获得较大的输出功率。而分层燃烧,整个燃烧室内的混合气的空燃比是不同 的,火花塞附近的混合气浓度要比其他地方的要高,这样在 火花塞周围的混合气他可以迅速燃烧,从而带动较远处较稀 的混合气体的燃烧,这种燃烧方式称为“分层燃烧”。均质 燃烧的目的是在高速行驶、加速时获得大功率;分层燃烧是为 了在低转速、低负荷时节省燃油。 如何是实现分层燃烧 ?如 TSI 发动机是怎样实现分层燃烧的 ?首先,发动机在进 气行程活塞移至下止点时,ECU控制喷油嘴进行一次小量的 喷油,使气缸内形成稀薄混合气。在活塞压缩行程末端时再进行第二次喷油,这样在 火花塞附近形成混合气相对浓度较高的区域(利用活塞顶的 特殊结构),然后利用这部分较浓的混合气引燃汽缸内的稀薄 混合气,从而实现气缸内的稀薄燃烧,这样可以用更少的燃 油达到同样的燃烧效果,进一步降低发动机的油耗。在平时开车的时候相信大家都有体会,感觉带“T ”的 发动机很给力,动力很强劲。涡轮增压发动机为什么动力强 劲?是怎样增压的?下面我们就来了解一下发动机增压器的工 作原理。 节气门的作用在发动机进气系统中主要有两大部件,一是空气滤清 器,主要负责过滤空气中的杂质;二是进气管道,主要将空气 引入到气缸中。而在进气管中有个很重要的部件,就是节气 门。节气门主要的作用就是控制进入气缸的混合气量 大小。那它是怎么控制进气量的呢?我们开车时踩油门踏板的 深浅,其实就是控制节气门开度的大小。油门踏板踩得越深, 节气门开度就越大,混合气进入量就越大,发动机的转速就 会上升。传统拉线油门是通过钢丝一端与油门踏板相连另 一端与节气门相连,它的传输比例是1:1,这种方式控制精 度不理想。而现在的电子节气门(电子油门),是通过位置传 感器,将踩踏油门踏板动作的力量、幅度等数据传输到控制 单元进行分析,然后总结出驾驶者踩油门的意图,再由 ECU 计算实际节汽门开合度并发出指令控制节汽门电机工作,从 而实现对节气门的精准控制。 进气歧管长度可变 ? 我们平时看到发动机的进气歧管的长度好像都是固定 的,它的长度还可以改变?其实在进气歧管内安装控制阀,通 过它的打开和关闭,可以将进气歧管分为两段,从而改变它 的有效长度。那改变进气歧管的长度有什么作用呢?主要是为 了提高发动机在不同转速时的进气效率,从而提升发动机在 各个转速下的动力性能。当发动机低速运转时,黑色控制阀关闭,气流被迫 从长歧管流入气缸,可以增加进气的气流速度和压强,使汽 油和空气更好的混合,燃烧更充分(这个有点像把水流不急的 水管捏扁后,水流速度会变急的原理一样)。当发动机转速升 高时,控制阀门打开,气流绕开下端管道直接进入气缸,这 时能更快吸入更多的空气,增大发动机高转速的进气量。 排气歧管为什么“长”得奇形怪状的 ?汽车的排气系统主要包括排气歧管、三元催化转化器、 消声器和排气管道等。主要的作用就是将气缸内燃烧的废气 排出到大气中。为什么我们看到的排气管大多都形状怪异的?这种 设计主要是为了最大限度地避免各缸排出的废气发生相互 干涉或废气回流的现象,而影响发动机的动力性能。虽然排气管设计的奇形怪状,但为了防止出现紊 流,还是遵循一定的原则的,如各缸排气歧管尽可能独立、 长度尽可能相等;排气歧管尽可能长等。 涡轮增压是怎样增压的 ? 涡轮增压大家并不陌生,平时在车的尾部都可以看 到诸如 1.4T、2.0T 等字样,这说明了这辆车的发动机是带涡 轮增压的。涡轮增压(Turbocharger)简称Turbo或T。涡轮增 压是利用发动机的废气带动涡轮来压缩进气,从而提高发动 机的功率和扭矩,使车更有劲。涡轮增压器主要由涡轮机和压缩机两部分组成,之 间通过一根传动轴连接。涡轮的进气口与发动机排气歧管相 连,排气口与排气管相连;压缩机的进气口与进气管相连,排 气口则接在进气歧管上。到底是怎样实现增压的呢?主要是通 过发动机排出的废气冲击涡轮高速运转,从而带动同轴的压 缩机高速转动,强制地将增压后的空气压送到气缸中。涡轮增压主要是利用发动机废气的能量带动压缩 机来实现对进气的增压,整个过程中基本不会消耗发动机的 动力,拥有良好的加速持续性,但是在低速时涡轮不能及时 介入,带有一定的滞后性。(涡轮增压工作原理 ) 机械增压又是怎样的 ?相对于涡轮增压,机械增压(Supercharger)的原理则 有所不同。机械增压主要是通过曲轴的动力带动一个机械式 的空气压缩机旋转来压缩空气的。与涡轮增压不同的是,机 械增压工作过程中会对发动机输出的动力造成一定程度的 损耗。由于机械增压器是直接由曲轴带动的,发动机运转 时,增压器也就开始工作了。所以在低转速时,发动机的扭 矩输出表现也十分出色,而且空气压缩量是按照发动机转速 线性上升的,没有涡轮增压发动机介入那一刻的唐突,也没 有涡轮增压发动机的低速迟滞。但是在发动机高速运转时, 机械增压器对发动机动力的损耗也是很大的,动力提升不太 明显。(机械增压工作原理) 双增压发动机是怎样工作的 ?双增压发动机,顾名思义就是指一台发动机上装有两个 增压器。如一台发动机上采用两个涡轮增压器,则称为双涡 轮增压发动机。如宝马 3.0L 直列六缸发动机,采用的就是两 个涡轮增压器。针对废气涡轮增压的涡轮迟滞现象,排气管上并联 两只同样的涡轮(每三个缸一组连接一个涡轮增压器),在发 动机低转速的时候,较少的排气即可驱动涡轮高速旋转以产 生足够的进气压力,减小涡轮迟滞效应。(宝马 BMW M5 F10 双涡轮增压发动机)前面了解到,涡轮增压器在低转速时有迟滞现象,但高 速时增压值大,发动机动力提升明显,而且基本不消耗发动 机的动力;而机械增压器,是发动机运转直接驱动涡轮,没有 涡轮增压的迟滞,但是是损耗部分动力、增压值较低。那把 它们结合一起就岂不是可以优势互补了?双增压发动机示意图(涡轮增压器+机械增压器)如大众高尔夫 GT 上装备的 1.4 升 TSI 发动机,设计师 就把涡轮增压器和机械增压器结合到了一起。将机械增压器 安装到发动机进气系统上,涡轮增压器安装在排气系统上, 从而保证发动机在低速、中速和高速时都能有较好的增压效 果。在我们日常养车中,定期更换机油机滤、检查水箱水是 必不可少的项目,这对发动机的工作性能有着重要的影响。 机油、水箱水分别是发动机润滑系和冷却系的重要载体,那 它们是怎样对发动机进行润滑和冷却的呢?下面我们一起来 了解一下吧。 发动机如何润滑 ?发动机内部有许多相互摩擦运动的零件,如曲轴主轴颈 与主轴承、凸轮轴颈与凸轮轴承、活塞、活塞环与气缸壁面 等等,这些部件运动速度快,工作环境恶劣,它们之间需要 有适当的润滑,才能降低磨损,延长发动机的寿命。机油作 为发动机的“血液”,对发动机油具有润滑、冷却、清洗、 密封和防锈等作用,定期地更换机油对发动机有着重要的作 用。机油主要存储在油底壳中,当发动机运转后带动机 油泵,利用泵的压力将机油压送至发动机各个部位。润滑后 的机油会沿着缸壁等途径回到油底壳中,重复循环使用。反复重复润滑的机油中,会带有磨损的金属末或灰 尘等杂质,如不清理反而加速零件间的磨损。所以在机油油 道上必须安装机油滤清器进行过滤。但时间过长,机油一样 会变脏,因此在车辆行驶一定里程后必须更换机油机滤。 发动机是如何冷却的 ?发动机除了要有润滑系统减少零件间的摩擦外,还必须要有个冷却系统,适时将受热零件的部分热量及时散发出 去,以保证发动机在最适宜的温度状态下工作。发动机冷却 有水冷和风冷两种方式,现在一般车用发动机都采用水冷 式。发动机水冷式冷却系统主要由水泵、散热器、冷却风扇、 补偿水箱、节温器、发动机机体、气缸盖水套等部分组成。那是怎么进行冷却的呢?主要通过水泵使环绕在气 缸水套中的冷却液加快流动,通过行驶中的自然风和电动风 扇,使冷却液在散热器中进行冷却,冷却后的冷却液再次引 入到水套中,周而复始,实现对发动机的冷却。其实冷却系除了对发动机有冷却作用外,还有“保 温”的作用,因为“过冷”或“过热”,都会影响发动机的 正常工作。这个过程主要是通过节温器实现发动机冷却系 “大小循环”的切换。什么是冷却系统的大小循环?可以简单 理解为,小循环的冷却液是不通过散热器的,而大循环的冷 却液是通过散热器的。 柴油机和汽油机的区别柴油机和汽油机是汽车上最常见的两种动力装置,因为 燃料的不同,柴油机和汽油机工作方式也是有所不同的。主 要表现在以下几个方面,首先喷射方式不一样,一般的汽油 机(直喷发动机除外)是将汽油与燃料混合后进入气缸,而柴 油机是直接将柴油喷入已充满压缩空气的气缸。其次,点火方式不同。汽油机需要火花塞将混合气 点燃,而柴油机是压缩自燃点火。最后,压缩比不同,柴油 机的压缩比一般都比汽油机的要大,因此它的膨胀比和热效 率比较高,油耗比汽油机要低。 转子发动机是怎样工作的 ?转子发动机也称三角活塞旋转式发动机,与我们常见的 往复式发动机不同的是,它是一种通过三角活塞在气缸内做 旋转运动的内燃机。转子发动机的活塞是一个扁平三角形,气缸是一个 扁盒子,活塞偏心地安装在空腔内。汽油燃烧产生的膨胀力 作用在转子的侧面上,从而将三角形转子的三个面之一推向 偏心轴的中心,在向心力和切向力的作用下,活塞在气缸内 做行星旋转运动。在这过程中,工作室的容积随着活塞转动发生周期 性的变化,从而完成进气、压缩、做功、排气这四个行程。 活塞每旋转一次就做功一次,与一般的四冲程发动机每转两 圈才做一次功,具有高马力容积等优点。 混合动力汽车是怎样的 ?现在的混合动力汽车一般为油电混合,就是利用燃油发 动机和电动机共同为汽车提供动力。混合动力车上的装置可 以在车辆减速、制动、下坡时回收能量,并通过电动机为汽 车提供动力,因此它的油耗比较低,但汽车价格相对较高。根据电动机所起作用的大小,可以分为强混合动力 和轻混合动力两种。强混合动力车主要采用大功率电动机, 尽量缩小发动机的排量。在起步或低速时,可以单纯依靠电 力行驶,如在车辆重载、加速等情况下,发动机才会介入工 作。轻混合动力车的主要驱动力是燃油发动机,而电动 机只是作为辅助作用,不能单独驱动汽车。但能在车辆减速、 制动时进行能量回收,实现混合动力的最大效率。前面了解到发动机的工作原理,都知道发动机的转速是 非常高的,如将动力直接作用于车轮来驱动汽车的话是很不 现实的。为了满足汽车起步、爬坡、高速行驶等驾驶的需要, 变速器应运而生。本期文章将为大家解析一下汽车变速器的 结构及工作原理。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑环境 > 机械电气


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!