资源描述
第5章 语音的同态滤涉及倒谱分析5.1 概述5.2 同态信号处置的根本原理5.3 复倒谱和倒谱5.4 语音信号两个卷积分量复倒谱的性质5.5 防止相位卷绕的算法5.6 语音信号的复倒谱分析实例5.1 概述o在这一章中讨论的同态处置方法是一种非线性方法.它能将两个信号经过乘法合成的信号或经过卷积合成的信号分开.o对于语音信,我们的目的是要从声道冲激呼应分量与鼓励分量的卷积中分开各原始分量o本章主要讨论卷积同态系统,以及它在语音处置中的运用,如基音检测、共振峰分析以及同态声码器等.o一帧语音信号=声门鼓励信号*声道冲激呼应o留意:此处符号*表示卷积运算o语音分析的目的:将鼓励源与声道冲激呼应分开来分别进展研讨,它们被广泛用于各种语音编码、合成、识别以及说话人识别。5.1 概述o“解卷,即将各卷积分量分开,有时也称作反卷积。o解卷算法分为两大类:o第一类算法是“参数解卷,包括线性预测分析等。o第二类为“非参数解卷,同态信号处置是其中最重要的一种。o对语音信号解卷的益处:o1)可对鼓励源进展研讨,因此可以了解语音段是属于浊音还是清音,及确定浊音的基音频率o2)可对声道冲激呼应进展研讨,因此可以了解声道特性及共振峰 5.1 概述o分别组合信号所采用的方法:o1)分别加性信号常采用线性滤波的方法:o2)分别非加性组合(如乘性或卷积性组合)信号,常采用同态滤波技术。1 1221 1221122()()()()()()()()()()()y nL x nLx nx nc x nc x nL c x nc x nc L x nc L x n表示运算符号为加性信号,且 则:o同态信号处置也称为同态滤波,它实现了将卷积关系变换为求和关系的分别处置。o为了分别加性组合信号,常采用线性滤波方法。o为了分别非加性组合(如乘积性或卷积性组合)信号,常采用同态滤波技术。同态滤波是一种非线性滤波,但它服从广义叠加原理。o对语音信号进展同态分析后将得到其倒谱参数,所以同态分析也称为倒谱分析。由于对语音信号分析是以帧为单位进展的,所以得到的是短时倒谱参数。o无论是对于语音通讯、语音合成还是语音识别o倒谱参数优点:所含的信息比其他参数多,也就是说语音质量好、识别正确率高;o倒谱参数缺陷:是运算量较大。o虽然如此,倒谱分析仍是一种有效的语音信号分析方法。5.1 概述5.1 概述o广义叠加原理o小四边形表示输入矢量之间的运算、小三角形表示输入矢量与标量之间的运算、小圆形表示输出矢量之间的运算、小菱形表示输出矢量与标量之间的运算。o输入矢量之间的运算和输出矢量之间的运算可以为:加法、乘法或卷积等运算。o输入矢量或输出矢量与标量之间的运算可以为:o 乘法、幂或开方等运算5.1 概述o广义叠加原理数学表达:o同态系统的规范方式:5.2 同态信号处置的根本原理o同态信号处置的本质:o把非线性问题转化为线性问题来处置。o分类:1)乘积同态处置 2)卷积同态处置图5-1卷积同态系统的模型该系统的输入输出都是卷积性运算。5.2 同态信号处置的根本原理o卷积同态处置的根本原理:o同态处置实际:任何同态系统都能表示为三个同态系统的级联,即同态系统可分解为:o两个特征系统(它们只取决于信号的组合规那么)o第一个系统以假设干信号的卷积组协作为其输入,并将它变换成对应输出的相加性组合。o第二个系统是一个普通线性系统,它服从叠加原理。o一个线性系统(它仅取决于处置的要求)。o第三个系统是第一个系统的逆变换,即它将信号的相加性组合反变换为卷积组合。o这种同态系统的重要性在于,可以使这种系统的设计简化为线性系统的设计问题。5.2 同态信号处置的根本原理o卷积特征子系统:图5-2同态系统的组成5.2 同态信号处置的根本原理 nxnxzXZzXZzXzXZnxzXzXzXzXzXzXzXnxnxZzXnxnxnx2121112112121212121 lnln lnlnlnlnln加性信号的Z变换或逆Z变换依然是加性信号,因此这种时域信号可以用线性系统处置。)(nx5.2 同态信号处置的根本原理 线性系统线性系统 L nynynxLnxLnxnxLnxLnynxnxnx21212121 5.2 同态信号处置的根本原理o卷积逆特征子系统:1D经过线性处置后,假设将其恢复为卷积性信号,可以经过逆特征系统,它是特征系统的逆变换。5.2 同态信号处置的根本原理 nynyzYZzYZzYzYZnyzYzYzYzYzYzYzYnynyZzYnynyny2121112112121212121 exp exp expexpexpexpexp前往5.3复倒谱和倒谱-两种同态处置方法o复倒谱定义:是一个时域序列,是x(n)的“复倒频谱,简称为“复倒谱,也称作对数复倒谱。o复对数函数的单值性原那么:o它必需是一对一的变换;o它必需满足广义的叠加原理;o它必需是有效的z变换;o它必需有独一的定义必需选定一个收敛域。1lnZ x nx nZ)(nx)()()()()()(212111nxnxnxzXzXZzXZ1.1.复对数的多值性问题:复对数的多值性问题:并不是一对一的变换并不是一对一的变换5.3 复倒谱和倒谱 zX ,1,0,2argln arglnargexpkkzXjzXzXjzXzXzXjzXzX zXzXARGzXjARGzXzXargln5.3 复倒谱和倒谱 虽然经过用其主值来取代原值的虽然经过用其主值来取代原值的手段来处理复对数中手段来处理复对数中 不明确不明确的问题是相当普遍的,但是不能在这的问题是相当普遍的,但是不能在这里采用此手段,由于它通常会使运算里采用此手段,由于它通常会使运算不再遵照广义叠加原理:不再遵照广义叠加原理:zXarg zXzXzXzXzXzXzXzXzXzXzX21212121argargarglnlnlnlnlnlnln5.3 复倒谱和倒谱但两个角度之和的主值通常不等于它但两个角度之和的主值通常不等于它们各自相应的主值之和。们各自相应的主值之和。zXARGzXARGzXARGzXzXzX2121argargarg5.3 复倒谱和倒谱2.复对数函数的解析性问题:复对数函数的解析性问题:为了让同态滤波系统成为一个可实现系为了让同态滤波系统成为一个可实现系统,统,必需是因果、稳定和独一的,因此必需是因果、稳定和独一的,因此 的收敛域包含单位圆,且在此收敛域的收敛域包含单位圆,且在此收敛域内内 是是 z的解析函数,即的解析函数,即 必需是关必需是关于于 的延续函数,但的延续函数,但 不是不是 的的延续函数延续函数。nx zX jeX jeXARG zX5.3 复倒谱和倒谱5.3 复倒谱和倒谱5.3 复倒谱和倒谱o倒谱(倒频谱/对数倒频谱):o与复倒谱不同的是,在倒谱情况下一个序列经过正逆两个特征系统变换后,不能复原本钱身,由于c(n)中只需幅值信息而无相位信息。虽然如此,但仍可用于语音信号分析中,由于人们的听觉对语音的感知特征主要包含在幅度信息中,相位信息不起主要作用。112121212()ln()()()()()()()()()()()jc nx ecncnxnxnx nxnxnc ncncn若和分 别 为和的 倒 谱,则的 倒 谱 为Foc(n)即是即是 中的偶对称分量。是时间序列,由中的偶对称分量。是时间序列,由于它是从频率逆变换得到的。于它是从频率逆变换得到的。o假设假设c1(n)和和c2(n)分别是分别是x1(n)和和x2(n)的倒的倒谱,并且谱,并且x(n)=x1(n)*x2(n);那么;那么x(n)的倒的倒谱为谱为c(n)=c1(n)+c2(n)。o与复倒谱不同的是,在倒谱情况下一个序列经过正与复倒谱不同的是,在倒谱情况下一个序列经过正逆两个特征系统变换后,不能复原本钱身;这是由逆两个特征系统变换后,不能复原本钱身;这是由于在计算倒谱的过程中将序列的相位信息丧失了。于在计算倒谱的过程中将序列的相位信息丧失了。5.3 复倒谱和倒谱)(nx5.4 语音信号两个卷积分量复倒谱的性质o语音信号可看作是声门鼓励信号和声道冲激呼应的卷积o1.声门鼓励信号的复倒谱:(主要分析浊音鼓励)002112001000()(),0,:1)()()11()pppppMrprrpMrNnrnrMNNMNNMrrx nnrNMrrMNX zx n zzzzzx naz 和 均为正整数且为幅度因子,为用样点数表示的基音周期。求5.4 语音信号两个卷积分量复倒谱的性质o其中o2)对上式取对数,并将对数部分展开为泰勒级数:1ra1010111()ln()lnln1()ln(),(),)ppppMNrrkMNNkrrrkNrX zX za zazzaka z此处可令x=然后再展开5.4 语音信号两个卷积分量复倒谱的性质10111013)()():1()()ln()()11,()ln()()MkrpkrMkkrrkpkXzzx nx nXznankNkakkx nnnkN 对进 行 逆变 换 得 到令,则Z结论:一个有限长的周期冲激序列,其复倒谱除原点处也是一个周期冲激序列,且周期不变,只是序列变为无限长序列,同时其振幅随k的增大而衰减,且比原序列衰减更快。除原点外,可以采用“高复倒谱窗从语音信号的频谱中提取浊音鼓励信号的频谱(对于清音鼓励,也只损失了0nN-1的一部分的鼓励信息),从而可运用复倒谱提取基音。5.4 语音信号两个卷积分量复倒谱的性质2.声道冲激呼应序列的复倒谱:假设用最严厉的零极点模型,那么有 zdzczbzaAzXdcbazdzczbzaAzXkpkkpkkmkkmkkkkkpkkpkkmkkmkkoioioioi1ln1ln 1ln1lnln1,11111111111111115.4 语音信号两个卷积分量复倒谱的性质0 ,1ln ;1ln 0,1ln0 ,1ln ;1ln 0,1ln1ln111111111111nndzdZnbzbZbznznbznbzbnnczcZnazaZaznznazanxxnkknkkknnnknnnkknkknkkknnnkknn5.4 语音信号两个卷积分量复倒谱的性质)1()1()1()1()(ln)(ln)(111111111111nundnuncnunbnunanAnxzndzncznbznaAzXioioioiopkpknknkmkmknknkpknpknnnknnkmknmknnnknnk则5.4 语音信号两个卷积分量复倒谱的性质)3(0,)2(0,)1(0 ,ln1111nndnbnnancnAnxooiipknkmknkmknkpknk5.4 语音信号两个卷积分量复倒谱的性质5.4 语音信号两个卷积分量复倒谱的性质语音信号的复倒谱语音信号的复倒谱5.5 防止相位卷绕的算法o相位卷绕:o求复倒谱中的取对数运算存在的相位多值性问题,我们称之为相位卷绕。它的不确定性将使复倒谱恢复语音的运算产生错误。o三种防止相位卷绕的方法非取相位主值的方法5.5 防止相位卷绕的算法o1.微分法:o本质:利用傅里叶变换微分、对数微分特性。o微分特性:()()()()jj nnjj nndjX enx n eddjX enx n ed同理:)(nx)(jeXx(n)的复倒谱对数谱5.5 防止相位卷绕的算法()ln()()()ln()()()()()jjjjjjjj njnX eX edjX edddjX ejX eddX edjX ednx n eX e利用对数微分特性和:因此:这样求语音信号的复倒谱就避开了复对数运算5.5 防止相位卷绕的算法图5-4利用傅里叶变换的微分特性求复倒谱的框图o缺陷:会引起严重的频谱混叠o缘由:nx(n)频谱中的高频分量比x(n)的多,有效最高频率比x(n)的大,假设仍按原取样率分析将引起此景象。5.5 防止相位卷绕的算法o2.最小相位信号法:o本质:由最小相位信号序列的复倒谱性质及希尔伯特变换的性质推导而来。o适用范围:是一种好方法,但仅适用于最小相位信号。5.5 防止相位卷绕的算法o原理:里叶变换的实部。原序列的傅序列的傅里叶变换等于注:原序列的实偶对称不包含相位信息的实部可知:由希尔伯特变换的性质必为因果稳定序列,为最小相位信号,则设jjRjjeeoeeXeXeXeXnxnxnxnxnxnxnxnxnx2121,)()(5.5 防止相位卷绕的算法的实部避开相位信息恢复由此可用偶对称分量来因果序列可得:又设jeeoejjjIjRjeXnxnxnxnnxnxnxnnxnxnnxnxnxnxnxnxnxkeXjeXeXjeXeX)()(0)(0)(2)()(0)(0)(00)()()(21)(,)()(21)(2argln5.5 防止相位卷绕的算法图5-5因果序列的分解和恢复5.5 防止相位卷绕的算法可得设辅助因子)()()(,020100)(:nxngnxnnnnge图5-6最小相位信号法求复倒谱5.5 防止相位卷绕的算法3.递推法:适用范围:仅限于最小相位信号。根本原理:设 x(n)为最小相位序列 zXdzzXdzdzzdXzdzzdXzXdzzXddzzXdzXzX1lnln可得由公式5.5 防止相位卷绕的算法 0 ,nx(n)=x(n)*x(n)n 定理,有变换的微分性质及卷积Z根据,nknxkxnknxknxkxknnxdzzdXznnxzkk可得:变换,两边再求逆5.5 防止相位卷绕的算法 0 ,nknxkxnknxk是一个因果序列是一个因果序列:nx;0 ,0nnx是一个最小相位序列:是一个最小相位序列:nx;0 ,0nnxnkknk 0 ,0或条件可得:综合此公式和上述两个5.5 防止相位卷绕的算法 0,000 ,00,0 ,0 ,10100nxknxkxnkxnxnnxnknxkxnkxnxnknknxkxnknxnknknk由此,进一步可得这是一个递推公式,求出这是一个递推公式,求出n=0时的值,一切其它值均可求出。但时的值,一切其它值均可求出。但n=0要用其他方法求出要用其他方法求出5.5 防止相位卷绕的算法 AzXxzzczaAzXzxzpkkmkkiilim01101111变换初值定理:变换表达:典型的的方法:求初值5.5 防止相位卷绕的算法o缺陷:对某些信号,假设初值x(0)过小,那么复倒谱在递推计算时将出现发散的情况。)0(ln0ln)(ln)0(ln0)(ln)(ln00 xxnAxnxxznxnxnxnnnn1-1-1-1-5.6 语音信号的复倒谱分析实例o在进展语音倒谱和复倒谱分析之前o必需对语音信号进展加窗处置:。取海明窗,可减少畸变函数特别对于倒谱分析,窗注:)(21)()()()()()(nwwnwnxnxnwnxnx1.倒谱分析:deeXeXFncnjjj)(ln21)(ln)(15.6 语音信号的复倒谱分析实例在x(n)是最小相位序列的情况下,复倒谱与倒谱之间有以下的关系:000)()(0)(2)(2)(nnnxncnnxncnxee由于倒谱等于复倒谱的偶对称部分,故有着与复倒谱一样的特性,且为偶函数。5.6 语音信号的复倒谱分析实例 先用窗w(n)选择一个语音段,再计算复倒谱,然后将欲得到的复倒谱分量用一个“复倒谱窗l(n)分别出来。所得到的窗选复倒谱用逆特征系统进展处置以恢复所需的卷积分量。图5-8语音同态滤波系统的构成5.6 语音信号的复倒谱分析实例2.倒谱分析实例:图(a)是一段加窗语音的时域波形图,窗长为15 ms,fs10 kHz,因此共包括150个语音样点。这段语音用海明窗加权,基音周期为Np45;图(b)所示为其对数幅度谱,其谐波分量是由输入信号的周期性所引起的;图(c)显示出相位主值的不延续性,5.6 语音信号的复倒谱分析实例2.倒谱分析实例:图(d)所示的防止了卷绕的相位谱就没有不延续性。图(b)和图(d)合在一同构成图(e)所示复倒谱的傅里叶变换。图(e)中正负两侧等于基音周期的时间点上出现的尖峰,迅速衰减的低复倒谱域分量表示声道、声门鼓励以及辐射的组合效应。图(f)所示为倒谱,它只是对对数幅度谱进展傅里叶反变换(即设相位恒为零)。实践上倒谱也表现出和复倒谱一样的普通性质,这是由于倒谱是复倒谱的偶对称分量。由图(f)可见,倒谱是一个偶函数;这是由于它是一个偶对称分量。5.6 语音信号的复倒谱分析实例图5-9浊音语音用同态滤波分别出声门鼓励和声道呼应的例如(a)声道的对数幅频特性的估值;(b)声道相频特性的估值;(c)声道冲激呼应的估值;(d)声门鼓励脉冲的估值其中图(a)和图(b)为特征系统中得到的对数幅度谱及相位谱,经过低复倒谱窗l(n)和D*-1 之后的输出波形即声道冲激呼应如图(c)所示。图(d)给出了声门鼓励信号。可以看出,声门鼓励波形近似于一个冲激串,其幅度随时间的变化关系坚持了加权所用的海明窗外形。5.6 语音信号的复倒谱分析实例o图5-10给出了一样条件下一段加窗清语音的时域波形及其倒谱。o其中图(a)是一个海明窗乘过的清音语音段,图(b)为这段语音的对数幅度谱,图(c)为其倒谱。o可见对数幅度谱的变化没有规律,没有表达出谐波分量,这是由于鼓励信号是随机的,因此语音的短时道中包含一个随机分量。此时,计算相位没有什么意义。o由图(c)可见,倒谱中没有出如今浊音情况下的那种尖峰,然而低倒谱域部分包含了关于声道冲激呼应的信息。由图(c)明显可见倒谱为偶函数。图(d)阐明了这一点,它表示对图(c)的倒谱经低倒谱窗加权后得到的声道的对数幅频特性。图5-10清音的同态分析窗选时域波形;(b)语音的短时对数幅度谱;(c)倒谱;(d)声道幅频特性的估值5.6 语音信号的复倒谱分析实例o上面的举例阐明:o可以用同态滤波得到某些根本参数的近似表示。o实践上,在大多数语音分析的运用中没有必要对语音波形完全解卷,普通满足于估计如基音周期和共振峰频率等一些根本参数,因此可以从复杂的相位计算中解脱出来。o例如,比较图5-7(f)和图5-10(c)可知,用倒谱可以区分清音和浊音;而且,倒谱中存在着浊音的基音周期。同时,共振峰频率在声道的对数幅频特性中清楚地显现出来。
展开阅读全文