工程专业参考文献、相关材料

上传人:wen****ng 文档编号:166499951 上传时间:2022-11-01 格式:DOC 页数:27 大小:237KB
返回 下载 相关 举报
工程专业参考文献、相关材料_第1页
第1页 / 共27页
工程专业参考文献、相关材料_第2页
第2页 / 共27页
工程专业参考文献、相关材料_第3页
第3页 / 共27页
点击查看更多>>
资源描述
目 录第一部分: 毕业设计任务书第二部分: 开 题 报 告第三部分: 文 献 综 述第四部分: 外 文 翻 译 毕业设计(论文)任务书题 目 渝巫路开县C标投标文件 及成本控制方法研究 (任务起止日期 2010 年3月29日 2010年6月10日) 管理 院 工程管理(工程造价) 专业 1 班学生姓名 周越 学 号 06990111 指导教师 李红镝 教研室主任 彭赟 院 领 导 许茂增 课题内容: 毕业设计包括的主要内容: 1.可用以指导施工的实施性施工组织设计,明确工期、质量、机械、材料、人员等各项指标任务。对于各分项工程有明确的施工工艺技术指标控制。2.从施工单位角度对工程进行投标报价,按照自拟工程量清单内容完成报价计算。3.结合报价及施工组织设计完成一份模拟标书。4.根据项目的实际情况完成指导老师给定的论文题目写作。5.完成一篇英文翻译。课题任务要求: 1.施工组织设计合理且优化。2.报价计算准确,依据充分并且对单价组成内容清晰。3.标书内容全面、形式规范,完整有效。4.小论文的写作有针对性,论述清楚。5.英文翻译结合专业内容,翻译文章的选定有出处。主要参考文献(由指导教师选定):1 王洪江、符长青主编,公路工程施工组织设计编制手册,北京:人民交通出版社,2005年。 2 崔新媛、周直编著,工程项目招标与投标,北京:人民交通出版社,2004年。3公路工程国内招标文件范本,北京:人民交通出版社,2003。4 刘燕主编,工程招投标与合同管理,北京:人民交通出版社,2008。5 郭小宏、曹源文等主编,公路工程机械化施工与管理,北京:人民交通出版社,2008。 6 周水兴、向中富,桥梁工程,重庆大学出版社、新疆大学出版社.2001年10月。7 凌天清、杨少伟,道理工程北京.人民交通出版社,2005.4。8 沈其明、刘燕编,公路工程造价编制与管理,北京:人民交通出版社,2002。同组设计者周 越注:1. 此任务书应由指导教师填写。 2. 此任务书最迟必须在毕业设计开始前一周下达给学生。学生完成毕业设计(论文)工作进度计划表序号毕业设计(论文)工作任务工 作 进 度 日 程 安 排周次12345678910111213141516171819201完成设计依据的图纸及参考文献书籍的准备2通过查询定额完成各项工作的人工及机械台班数量3根据工日及台班数,完成各工序施工顺序的安排4完成垂直图、横道图、网络图以及施工组织设计文字部分5完成本合同段实施性施工组织设计及英文翻译6完成报价计算7完成投标文件的制作8完成论文的撰写9完成文档的排版、打印、装订10准备及完成答辩注:1. 此表由指导教师填写。2. 此表每个学生一份,作为毕业设计(论文)检查工作进度之依据;3. 进度安排请用“”在相应位置画出。毕业设计(论文)阶段工作情况检查表时间第一阶段第二阶段第三阶段内容组织纪律完成任务情况组织纪律完成任务情况组织纪律完成任务情况检 查 情 况教师签字签字 日期签字 日期签字 日期注:1. 此表应由教师认真填写;2. “组织纪律”一栏根据学生具体执行情况如实填写;3. “完成任务情况”一栏按学生是否按进度保质保量完成任务的情况填写;4. 对违纪和不能按时完成任务者,指导教师可根据情节轻重对该生提出警告或不能参加答辩的建议。 毕业设计(论文)开题报告题 目 渝巫路开县C标投标文件 及成本控制方法研究 专 业 工程管理(工程造价) 班 级 2006级1班 学 生 周 越 指导教师 李红镝 重庆交通大学 2010 年一、选题目的的理论价值和现实意义 目的:通过本次的选题,能够熟练掌握工程招投标的方法和技巧,做到理论与实践相结合,完成投标文件。并且能够了解成本控制方法,做好项目的成本控制。 工程招投标的意义:(1)有利于贯彻“公正、公平、公开”的原则。招投标双方在统一的工程量清单基础上进行招标和投标,承发包工作更易于操作,有利于防止建筑领域的腐败行为。(2)工程量清单报价可以在设计中期进行,缩短了建设周期,为业主带来明显经济效益。(3)要求投标方编制企业定额,进行项目成本核算,提高其管理水平和竞争能力。(4)清单条目简洁明了,有利于监理工程师进行工程计量,造价工程师进行工程结算,加快结算进度。(5)工程量清单对业主和承包商之间承担的工程风险进行了明确划分。业主承担了工程量变动的风险,承包商承担了价格波动的风险,体现了风险分担的原则。 成本控制的意义:有利于进一步加强成本管理,降低项目成本,提高经济效益。其次,有利于建筑企业在建筑市场中处于竞争主体地位。再次,有利于现代建筑企业制度的建立,建筑企业管理科学化的发展。最后,有利于建筑企业、社会及国家的可持续发展。 二、本课题在国内外的研究状况及发展趋势招投标国内外现状 国内研究现状 在市场经济模式下,特别是我国加入WTO后,我国的招投标制度业迫切需要与国际接轨。在我国推行工程量清单计价,这种计价模式是对我国原有定额计价模式的改革,实行“量价分离”,与传统定额计价办法相比,有着全新的内容:1)采用综合单价报价形式,综合单价包含了工程直接费、工程间接费、利润和各种税费。而定额计价先算定额直接费,然后计算各种费、税、材料价差等,最后求和得到工程造价。相比之下,工程量清单计价规范报价显得简单明了,更适合施工招投标。2)投标单位根据市场行情和自身实力报价,从而打破了工程造价形成的单一性和垄断性。3)工程量清单为投标人提供了一个平等的报价基础,结算时按照招标文件规定的计量方法计量实际完成数量。 国外研究现状情况 英国建筑工程项目发包方式主要是采用国际有限招标。其步骤一般是:首先投标的即换上招标组织保留的一份常备的经批准的动态的承包商名单中的另一家替补,承包商也可主动谢绝邀请,这并部影响其以后的投标机会。在发放招标文件时,习惯上都要将已发给招标文件的承包商的数目告知投标人。 日本的市场化程度非常高,法制健全,建筑市场巨大,其工程计价模式是“量价分离”模式。日本预算定额中的量和价是分开的,量公开而价保密。日本的工程招标同样可以分为公开招标、邀请招标和议标,投标过程中工程量要全部公开,并要求随工程量一起提供数量计算依据、必要的施工图纸。日本的工程定价最终都是通过工程招标确定的,投标报价最接近标底或者低于标底的中标(幅度是标底价的08)。 成本控制国内外现状: 国内研究现状 国内对于现代意义上成本控制理论和方法的研究始于二十世纪八十年代,是伴随我国改革开放逐渐发展起来的,施工项目成本控制理论与方法也逐渐成为理论与实务界研究的热门,许多专家学者从不同角度对这一课题进行了研究和探讨。20多年来,在学术界和企事业单位的共同努力下,价值工程和5S管理在我国的应用领域也不断扩大。对施工项目成本控制的研究相当重要,尤其是采用5S管理模式和推行价值工程进行成本控制,有助于建筑企业经济效益的提高和核心竞争力的增强,推动国民经济水平的总体发展。 国外研究现状 国外对建筑施工项目的研究比较早,1950年美国就已经研究出了网络计划技术,国外许多国家对施工项目成本控制都非常重视,把成本控制视为一项系统工程对待,并设有专门从事项目成本管理和研究的组织机构,如美国的成本工程师协会、日本有建筑学会成立的成本计划分会、英国的造价师协会。同时每个从事工程承包的公司内部也设有专门负责成本控制的人员和机构。美国建筑业控制项目造价的手段主要是价值工程。价值工程在日本也大量用于建筑业,但有其自己的特色,是把价值工程、工业化、全面质量管理结合在一起,使之成为建筑企业取得竞争优势和经济发展的一个“法宝”。 三、研究重点1.施工组织设计合理且优化。 2.报价计算准确,依据充分并且对单价组成内容清晰。 3.标书内容全面、形式规范,完整有效。 4.小论文的写作有针对性,论述清楚。 5.英文翻译结合专业内容,翻译文章的选定有出处。 6.施工项目成本控制理论综述,施工项目成本控制存在的问题,施工项目成本控制的对策。 四、主要参考文献1 王洪江、符长青主编,公路工程施工组织设计编制手册,北京:人民交通出版社,2005年。 2 魏道升编,路桥施工组织设计范例,北京:人民交通出版社,2008年1月。 3 崔新媛、周直,工程项目招标与投标,北京:人民交通出版社,2004年。 4公路工程国内招标文件范本北京:人民交通出版社,2003。 5 刘燕主编,工程招投标与合同管理,北京:人民交通出版社,2008。 6 郭小宏等编,公路工程机械化施工与管理,北京:人民交通出版社,2008。 7 苏建林编,公路工程施工技术,北京:人民交通出版社,2007。 8 交通部第一公路工程公司编,公路施工手册,北京:人民交通出版社, 2007。9 周水兴、向中富,桥梁工程,重庆大学出版社、新疆大学出版社.2001年。 10 凌天清、杨少伟,道理工程,北京:人民交通出版社,2005.4。 11 沈其明、刘燕编,公路工程造价编制与管理,北京:人民交通出版社,2002。12 全国造价工程师职业资格考试培训教材编审组,工程造价计价与控制,北京:中国计划出版社,2009.4。 13 全国造价工程师职业资格考试培训教材编审组,工程造价管理基础理论与相关法规,北京:中国计划出版社,2009.4。 五、指导教师意见 指导教师: 六、学院毕业设计(论文)指导小组意见 负责人: 毕业设计(论文)外文翻译 题 目应用新型延性纤维增强 聚合物对混凝土梁的加固 专 业 工程管理(工程造价) 班 级 2006级1班 学 生 周 越 指导教师 李红镝 重庆交通大学 2010 年ACI STRUCTUAL JOURNAL TECHNICAL PAPERTitle no. 99-S71Strengthening of Concrete Beams Using Innovative Ductile Fiber-Reinforced Polymer Fabricby Nabil F. Grace, George Abdel-Sayed, and Wael F. RaghebINTRODUCTIONThe use of externally bonded fiber-reinforced polymer(FRP) sheets and strips has recently been established as an effective tool for rehabilitating and strengthening reinforced concrete structures.Several experimental investigations have been reported on the behavior of concrete beams strengthened for flexure using externally bonded FRP plates, sheets, or fabrics. Saadatmanesh and Ehsani (1991) examined the behavior of concrete beams strengthened for flexure using glass fiber-reinforced polymer (GFRP) plates. Ritchie et al. (1991) tested reinforced concrete beams strengthened for flexure using GFRP, carbon fiber-reinforced polymer(CFRP), and G/CFRP plates. Grace et al. (1999) and Trian- tafillou (1992) studied the behavior of reinforced concrete beams strengthened for flexure using CFRP sheets. Norris, Saa-datmanesh, and Ehsani (1997) investigated the behavior of concrete beams strengthened using CFRP unidirectional sheets and CFRP woven fabrics. In all of these investigations,the strengthened beams showed higher ultimate loads com- pared to the nonstrengthened ones. One of the drawbacks experienced by most of these strengthened beams was a con-siderable loss in beam ductility. An examination of the load- deflection behavior of the beams, however, showed that the majority of the gained increase in load was experienced after the yield of the steel reinforcement. In other words, a signifaciant increase in service level loads could hardly be gained. Apart from the condition of the concrete element before strengthening, the steel reinforcement contributes significantly to the flexural response of the strengthened beam. Unfortunately,available FRP strengthening materials have a behavior that is different from steel. Although FRP materials have high strengths, most of them stretch to relatively high strain values before providing their full strength. Because steel has a relatively low yield strain value when compared with the ultimate strains of most of the FRP materials, the contri- bution of both the steel and the strengthening FRP materials differ with the deformation of the strengthened element. As a result, steel reinforcement may yield before the strengthened element gains any measurable load increase. Some designers place a greater FRP cross section, which generally increases the cost of the strengthening, to provide a measurable contri- bution, even when deformations are limited (before the yield of steel). Debonding of the strengthening material from the surface of the concrete, however, is more likely to happen in these cases due to higher stress concentrations. Debonding is one of the nondesired brittle failures involved with this technique of strengthening. Although using some special low-strain fibers such as ultra-high-modulus carbon fibers may appear to be a solution, it would result in brittle failures due to the failure of fibers. The objective of this paper is to introduce a new pseudo-ductile FRP fabric that has a low strain at yield so that it has the potential to yield simultaneously with the steel reinforcement, yet provide the desired strengthening level.RESEARCH SIGNIFICANCEFRPs have been increasingly used as materials for rehabil- itating and strengthening reinforced concrete structures. Currently available FRP materials, however, lack the ductility and have dissimilar behaviors to steel reinforcement. As a result, the strengthened beams may exhibit a reduced ductility, lack the desired strengthening level, or both. This study presents an innovative pseudo-ductile FRP strengthening fabric. The fabric provides measurably higher yield loads for the strengthened beams and helps to avoid the loss of ductility that is common with the use of currently available FRP.DEVELOPMENT OF HYBRID FABRICTo overcome the drawbacks mentioned previously, a ductile FRP material with low yield strain value is needed.Design concept and materialsTo generate ductility, a hybridization technique of different types of fibers has been implemented. Three fibers have been selected with a different magnitude of elongations at failure.The technique is based on combining these fibers together and controlling the mixture ratio so that when they are loaded together in tension, the fibers with the lowest elongation (LE) fail first, allowing a strain relaxation (an increase in strain without an increase in load for the hybrid). The remaining high-elongation (HE) fibers are proportioned to sustain the total load up to failure. The strain value at failure of the LE fibers presents the value of the yield-equivalent strain of the hybrid, while the HE fiber strain at failure presents the value of ultimate strain. The load corresponding to failure of LE fibers presents the yield-equivalent load value, and the maximum load carried by the HE fibers is the ultimate load value. Ultra-high-modulus carbon fibers (Carbon No. 1) have been used as LE fibers to have as low a strain as possible, but not less than the yield strain of steel (approximately 0.2% for Grade 60 steel). On the other hand, E-glass fibers were used as HE fibers to provide as high a strain as possible to produce a high-ductility index (the ratio between deformation at failure and deformation at yield). High-modulus carbon fibers (Carbon No.2) were selected as medium-elongation (ME) fibers to minimize the possible load drop during the strain relaxation that occurs after failure of the LE fibers, and also to provide a gradual load transition from the LE fibers to the HE fibers. Based on this concept, a uniaxial fabric was fabricated and tested to compare its behavior in tension with the theoretical predicted loading behavior. The theoretical behavior is based on the rule of mixtures, in which the axial stiffness of the hybrid is calculated by a summation of the relative stiffness of each of its components. The fabric was manufactured by combining different fibers as adjacent yarns and impregnating them inside a mold by an epoxy resin. Figure 2 shows a photo of one of the fabricated samples. Woven glass fiber tabs were provided at both ends of the test coupons to eliminate stress concentrations at end fixtures during testing. The coupons had a thickness of 2 mm (0.08 in.) and a width of 25.4 mm HE fibers.A yield-equivalent load (the first point on the load-strain curve where the behavior becomes nonlinear) of 0.46 kN/mm width (2.6 kips/in.) and an ultimate load of 0.78 kN/mm (4.4 kips/in.) are observed.BEAM DETAILSBeam tests Thirteen reinforced concrete beams with cross-sectional dimensions of 152 x 254 mm (6 x 10 in.) and lengths of 2744 mm (108 in.) were cast. The flexure reinforcement of the beams consisted of two No. 5 (16 mm) tension bars near the bottom, and two No. 3 (9.5 mm) compression bars near the top. To avoid shear failure, the beams were over-reinforced for shear with No. 3 (9.5 mm) closed stirrups spaced at 102 mm (4.0 in.). Five beams were formed with rounded corners of 25 mm (1 in.) radius to facilitate the installation of the strengthening material on their sides and bottom faces without stress concentrations.Strengthening materialsThe developed hybrid fabric was used to strengthen eight beams.Two different thicknesses of fabric were used. The first (H-system, t =1.0 mm) had a thickness of 1.0mm (0.04 in.), and the second(H-system, t = 1.5 mm) had a thickness of 1.5 mm (0.06 in.). Four other beams were strengthened with three currently available carbon fiber strengthening materials: 1) a uniaxial carbon fiber sheetwith an ultimate load of 0.34 kN/mm (1.95 kips/in.); 2) two layers of a uniaxial carbon fiber fabric with an ultimate load of 1.31 kN/mm (7.5 kips/in.) for the two layers combined; and 3) a pultruded carbon fiber plate with an ultimate load of 2.8 kN/mm (16 kips/in.).AdhesivesFor the hybrid fabric, an epoxy resin (Epoxy A) was used to impregnate the fibersand as an adhesive between the fabric and the concrete surface. This epoxy had an ultimate strain of 4.4% to ensure that it would not fail before the failureof the fibers. For the beams strengthened with carbon fiber sheets, plates, and fabric, an epoxy resin with an ultimate strain of 2.0% was used (Epoxy B).StrengtheningThe beam bottom faces and sides were sandblastedtoroughen the surface. The beams were then cleaned with acetone to remove dirt. Two strengthening configurations were used: 1) strengthening material on the bottom face of the beam only (Beam Group A); and 2) strengthening material on the bottom face and extended up 152 mm (6 in.) on both sides to cover approximately all the flexural tension portions of the beam (Beam Group B). The strengthening was installed for 2.24 m (88 in.), centered along the length of the beam. The epoxy was allowed to cure for at least 2 weeks before the beams were tested. For the beams strengthened with the developed hybrid fabric (H-system), two beams were fabricated and tested for each configuration to verify the results. InstrumentationThe FRP strain at midspan was measured by three strain gages located at the bottom face of the beam. The steel tensile strain was measured by monitoring the strain on the side surface of the beam at reinforcing bar level using a DEMEC (detachable mechanical gage) with gage points for Beam Group A, while strain gages were used for Beam Group B. The midspan deflection was measured using a string poten- tiometer. The beams were loaded using a hydraulic actuator. The load was measured by means of a load cell. All the sensors were connected to a data acquisition system to scan and record the readings.TEST RESULTS AND DISCUSSION CONTROL BEAMThe control beam had a yield load of 82.3 kN (18.5 kips)and an ultimate load of 95.7 kN (21.5 kips). The beam failed by the yielding of steel, followed by compression failure of concrete at the midspan. Test results for the control beam are shown in the figures of the test results of the strengthened beams (Fig. 6 through 15).Beam Group ABeam Group A contains the beams strengthened at the bottom face only. The results of Beams H-50-1 and H-75-1 were very close to those of H-50-2 and H-75-2, respectively, and hence, the discussions concerning these beams are focused on the last two to avoid repetition. The ductility of each beam is observed by calculating the ductility index as the ratio between the deflection of the beam at failure and its deflection at yield.The following are observed:1. Beams C-1 and H-50-2 exhibited relatively good ductile behaviors. Beam H-50-2, however, showed a higher yield load than Beam C-1. This is because the developed hybrid fabric was designed so that it has a higher initial stiffness than the carbon fiber sheet; hence, it contributed to strengthening more effectively than the carbon fiber sheet before the steel yielded;2. Although the carbon fiber fabric had an ultimate load several times greater than the yield-equivalent load of the 1.5 mm-thick hybrid fabric, Beam H-75-2 showed a similar behavior to Beam C-3, up to its yield. Beam H-75-2, however, exhibited a reasonable yielding plateau, and Beam C-3 did not;3. Relative to current carbon fiber strengthening materials, the developed fabric has a yield-equivalent strain that is close to the yield strain of steel. Although it is still higher, hybrid fabric strain values were close to its yield value when the beam yielded, which indicated that it yielded simultaneously with the steel. This is attributed in part to the fabric being installed on the outer surface of the beam, which undergoes more tensile strain than inner steel. As a result, the designed yield strain value of the fabric seems to be acceptable; and 4. While the use of a carbon fiber plate of a high load capacity (like the one used in Beam C-2) provided a high failure load, it also produced a brittle failure.Beam Group BThe beams in this group were strengthened at the bottom face and also up 152 mm (6 in.) on both sides. The results of Beams H-S50-1 and H-S75-1 were very close to those of H-S50-2 and H-S75-2, respectively, and hence, the discussions concerning these beams are focused on the last two to avoid repetition.The following are the observations from their test results:1. Beam H-S50-2 showed a higher yield load than Beam CS, although the hybrid fabric has a lower yield-equivalent load than the ultimate load of the carbon fiber sheet. This is because the hybrid fabric has a higher initial stiffness than that of the carbon fiber sheet; 2. The beams strengthened with the developed hybrid fabric showed high yield loads with reasonable yielding plateaus.One of the advantages of the developed hybrid
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!