资源描述
呼伦贝尔学院本科生毕业论文院系类别: 化学与化工与学院 专 业: 化学工程与工艺 学生姓名: 陈龙 班 级: 2012级煤化工班 学 号: 201217105029 论文题目: 年产20万吨中压法甲醇合成工艺设计 学科方向: 化学工程与工艺(煤化工方向) 指导教师: 乌日娜 论文知识产权权属声明本人在导师指导下所完成的学士学位论文及相关的研究成果,系在呼伦贝尔学院资助下的职务行为,知识产权归属呼伦贝尔学院与本人共有。呼伦贝尔学院有权保留并向国家有关部门或机构送交学位论文的复印件和电子版,可以采用影印、缩印或其它复制手段保存、汇编本学位论文。本人离校后发表或使用学位论文或与该论文直接相关的成果时,署名单位仍然为呼伦贝尔学院。允许论文被查阅和借阅以及申请专利。本人授权呼伦贝尔学院。 呼伦贝尔学院化学与化工学院学术委员会 年 月 日学号 论文作者签名: 指导教师签名: 年 月 日 化学与化工学院毕业设计任务书学生姓名陈龙专 业化学工程与工艺发题日期 2015 年 12 月 23 日设计期限自 2015 年 12月 23日至2016年 05 月 30日指导老师乌日娜设计题目年产20万吨中压法甲醇合成工艺设计内容:(1)设计方案的选择(2) 工艺计算(3) 绘图物料流程图合成、精馏工段带控制点的工艺流程图设备一览表(4)编写设计说明书系主任 签字院 长 签字目录摘要1关键字1一、 甲醇简介11.1甲醇性质11.1.1其物理性质11.1.2其化学性质21.2 甲醇的用途31.3甲醇产业的发展31.3.1 世界甲醇工业的发展31.3.2我国甲醇工业发展31.4 甲醇生产技术的发展31.4.1装置大型化41.4.2 二次转化和自转化工艺41.4.3新甲醇反应器的合成技术41.4.4引入膜分离技术的反应技术41.4.5液相合成工艺4二、甲醇的合成方法52.1 常用的合成方法52.1.1高压法52.1.2低压法52.1.3中压法52.2 甲醇的合成路线52.2.1常用的合成工艺52.2.2本设计的合成工艺72.3 本设计的主要方法及原理72.4 甲醇合成反应的化学平衡8三、工艺计算103.1 合成塔物料平衡计算103.2粗甲醇精馏的物料平衡计算163.2.1 预塔的物料平衡163.2.2 主塔的物料平衡计算183.3 甲醇生产的能量平衡计算193.3.1 合成塔能量计算193.3.2 常压精馏塔能量衡算213.4 主要设备计算及选型233.5 常压精馏塔计算233.5.1精馏段243.5.2提馏段243.6初估塔径253.6.1精馏段253.6.2提馏段263.7理论板数的计算273.7.1各点的甲醇摩尔分数273.7.2处理能力283.7.3平均挥发度283.7.4求最小理论塔板数Nm283.7.5求最小回流比293.7.6求实际理论板数293.7.7计算板效率30 年产20万吨中压法甲醇合成工艺设计摘要:甲醇最早由木材和木质素干馏制得,所以俗称木醇,这是最简单得饱和脂肪族醇类得代表物。甲醇是一种极重要的有机化工原料,也是一种燃料,是碳一化学的基础产品,在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。关键字:甲醇合成 中压一、 甲醇简介1.1甲醇性质甲醇的化学式是CH3OH,是一中无色、透明、高度挥发、易燃的液体,略有酒精气味。1.1.1其物理性质: 表1-1 甲醇的物理性质项目单位数值沸点64.5-64.7凝固点-97-97.8闪点12(闭口)-16(开口)自燃点473(空气)-461(氧气)蒸汽压力(20)Pa11825临界压力MPa7.95临界温度240燃烧热(25液体)KJ/mol726.55蒸发潜热(64.7)KJ/mol35.3液体热容(20-25)KJ/mol2.51-2.53气体热容(77)KJ/mol1.63爆炸上限%36.5爆炸下限%6最小点火能量MJ0.2161.1.2 其化学性质: 甲醇具有脂肪醇的化学性质,即可进行氧化、酯化、羰基化,氨化、脱水等反应。甲醇裂解产生CO和H2,是制备CO和H2的重要化学方法。 (1)氧化反应:甲醇在电解银催化剂上可被空气氧化成甲醛,是重要的工业制备甲醛的方法。 CH3OH+ 0.5 O2HCHO + H2O甲醇完全燃烧时氧化成Co和HO,放出大量的热: CH3OH + OCO2+ H2O H=726.55 kJ/mol (2)酯化反应:甲醇和硝酸作用生成硝酸甲酯 CH3OH +HNO3CH3 NO3+ H2O (3)羰基化反应:甲醇和光气发生羰基化反应生成氯甲酸甲酯,进一步反 应生成碳酸二甲酯: CH3OH+COCl2CH3OCOCl+HCl CH3OCOCl+CH3OH(CH3O)2CO (4) 胺化反应:在压力520Mpa,温度370420下,以活化氧化铝或分子筛催化剂,甲醇和氨发生反应生成一甲胺,二甲胺和三甲胺的混合物,经精馏分离可得一甲胺,二甲胺和三甲胺一甲胺,二甲胺和三甲胺产品。 CH3OH + NH3CH3NH2 + H2O 2CH3OH + NH3(CH3)2 NH + 2H2O 3CH3OH + NH3(CH3)3 + 3H2O (5) 脱水反应:甲醇在高温和酸性催化剂如ZSM-5,r-Al2O3 作用下分子间脱水生成二甲醚: 2CH3OH(CH3)2O+ H2O (6)裂解反应:在铜催化剂上,甲醇可裂解成CO和H2: CH3OHCO + H2 (7) 氯化反应:甲醇和氯化氢在Zn/ZrO催化剂上发生氯化反应生成一氯甲烷: CH3OH + HClCH3Cl + H2O 氯甲烷和氯化氢在CuCl2/ ZrO2催化剂作用下进一步发生氧氯化反应生成二氯甲烷和三氯甲烷。 CH3OH + HCl + 0.5O 2CH2Cl 2 + H2O CH3Cl2 + HCl + 0.5O 2CHCl3 + H2O (8) 其他反应:甲醇和苯在3.5MPa,350380反应条件下,在催化剂的作用下可生成甲苯: CH3OH + C6H6C6H5 CH3 + H2O 1.2 甲醇的用途 甲醇是重要有机化工原料和优质燃料,广泛应用于精细化工,塑料,医药,林产品加工等领域。甲醇主要用于生产甲醛,消耗量要占到甲醇总产量的一半,甲醛则是生产各种合成树脂不可少的原料。用甲醇作甲基化试剂可生产丙烯酸甲酯、对苯二甲酸二甲酯、甲胺、甲基苯胺、甲烷氯化物等;甲醇羰基化可生产醋酸、醋酐、甲酸甲酯等重要有机合成中间体,它们是制造各种染料、药品、农药、炸药、香料、喷漆的原料,目前用甲醇合成乙二醇、乙醛、乙醇也日益受到重视。甲醇也是一种重要的有机溶剂,其溶解性能优于乙醇,可用于调制油漆。作为一种良好的萃取剂,甲醇在分析化学中可用于一些物质的分离。甲醇还是一种很有前景的清洁能源,甲醇燃料以其安全、廉价、燃烧充分,利用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向之一;另外燃料级甲醇用于供热和发电,也可达到环保要求。甲醇还可经生物发酵生成甲醇蛋白,富含维生素和蛋白质,具有营养价值高而成本低的优点,用作饲料添加剂,有着广阔的应用前景。1.3甲醇产业的发展1.3.1 世界甲醇工业的发展总体上说,世界甲醇工业从90年代开始经历了1991-1998的供需平衡,1998-1999的供大于求,从2000年初至今的供求基本平衡三个基本阶段。据Nexant Chen Systems公司的最新统计,全球2004年甲醇生产能力为4226.5万t/a1.3.2我国甲醇工业发展我国的甲醇工业经过十几年的发展,生产能力得到了很大提高。1991年,我国的生产能力仅为70万吨,截止2004年底,我国甲醇产能已达740万吨,117家生产企业共生产甲醇440.65万吨,2005年甲醇产量达到500万吨,比2004年增长22.2%,进口量99.1万吨,因此下降3.1%。1.4 甲醇生产技术的发展1.4.1装置大型化 于上世纪末相比,现在新建甲醇规模超过百万吨的已不再少数。在20042008年新建的14套甲醇装置中平均规模为134万t/a,其中卡塔尔二期工程项目高达230万t/a。最小规模的是智利甲醇项目,产能也达84万t/a,一些上世纪末还称得上经济规模的60万t/a装置因失去竞争力而纷纷关闭。1.4.2 二次转化和自转化工艺 合成气发生占甲醇装置总投资的50%60%,所以许多工程公司将其视为技术改进重点。已经形成的新工艺在主要是Syenetix(前ICI)的先进天然气加热炉转化工艺(AGHR),Lurgi的组合转化工艺(CR)和Tops e的自热转化工艺(ATR)1.4.3新甲醇反应器的合成技术 大型甲醇生产装置必须具备与其规模相适应的甲醇反应器和反应技术。传统甲醇合成反应器有ICI的冷激型反应器,Lungi的管壳式反应器,Topsdpe的径向流动反应器等,近期出现的新合成甲醇反应器有日本东洋工程的MRF-Z反应器等,而反应技术方面则出现了Lurgi推出的水冷一气冷相结合的新流程。1.4.4引入膜分离技术的反应技术 通常的甲醇合成工艺中,未反应气体需循环返回反应器,而KPT则提出将未反应气体送往膜分离器,并将气体分为富含氢气的气体,前者作燃料用,后者返回反应器。1.4.5液相合成工艺 传统甲醇合成采用气相工艺,不足之处是原料单程转化率低,合成气净化成本高,能耗高。相比之下,液相合成由于使用了比热容高,导热系数大的长链烷烃化合物作反应介质,可使甲醇合成在等温条件下进行。二、甲醇的合成方法2.1 常用的合成方法 当今甲醇生产技术主要采用中压法和低压法两种工艺,并且以低压法为主,这两种方法生产的甲醇约占世界甲醇产量的80%以上。2.1.1高压法:(19.6-29.4Mpa)是最初生产甲醇的方法,采用锌铬催化剂,反应温度360-400,压力19.6-29.4Mpa。高压法由于原料和动力消耗大,反应温度高,生成粗甲醇中有机杂质含量高,而且投资大,其发展长期以来处于停顿状态。2.1.2低压法:(5.0-8.0 Mpa)是20世纪60年代后期发展起来的甲醇合成技术,低压法基于高活性的铜基催化剂,其活性明显高于锌铬催化剂,反应温度低(240-270)。在较低压力下可获得较高的甲醇收率,且选择性好,减少了副反应,改善了甲醇质量,降低了原料消耗。此外,由于压力低,动力消耗降低很多,工艺设备制造容易。2.1.3中压法:(9.8-12.0 Mpa)随着甲醇工业的大型化,如采用低压法势必导致工艺管道和设备较大,因此在低压法的基础上适当提高合成压力,即发展成为中压法。中压法仍采用高活性的铜基催化剂,反应温度与低压法相同,但由于提高了压力,相应的动力消耗略有增加。本设计所采用的合成方法比较以上三者的优缺点,以投资成本,生产成本,产品收率为依据,选择中压法为生产甲醇的工艺,用CO和H2在加热压力下,在催化剂作用下合成甲醇,其主要反应式为:CO+ H2CH3OH2.2 甲醇的合成路线2.2.1常用的合成工艺 虽然开发了高活性的铜基催化剂,合成甲醇从高压法转向低压法,完成了合成甲醇技术的一次重大飞跃,但仍存在许多问题:反应器结构复杂;单程转化率低,气体压缩和循环的耗能大;反应温度不易控制,反应器热稳定性差。所有这些问题向人们揭示,在合成甲醇技术方面仍有很大的潜力,更新更高的技术等待我们去开发。下面介绍20世纪80年代以来所取得的新成果。(1) 气液固三项合成甲醇工艺 首先由美国化学系统公司提出,采用三相流化床,液相是惰性介质,催化剂是ICI的Cu-Zn改进型催化剂。对液相介质的要求:在甲醇合成条件下有很好的热稳定性和化学稳定性。既是催化剂的硫化介质,又是反应热吸收介质,甲醇在液相介质中的溶解度越小越好,产物甲醇以气相的形式离开反应器。这类液相介质有如三甲苯,液体石蜡和正十六烷等。后来Berty等人提出了相反的观点,采用的液相介质除了热稳定性及化学稳定性外,要求甲醇在其溶液中的溶解度越大越好,产物甲醇不是以气相形式离开反应器,而是以液相形式离开反应器,在反应器外进行分离。经试验发现四甘醇二甲醚是极理想的液相介质。CO和H2在该液相中的气液平衡常数很大,采用Cu-Zn-Al催化剂,其单程转化率大于相同条件下气相的平衡转化率。气液固三相工艺的优点是:反应器结构简单,投资少;由于介质的存在改善了反应器的传热性能,温度易于控制,提高了反应器的热稳定性;催化剂的颗粒小,内扩散影响易于消除;合成甲醇的单程转化率高,可达15%-20%,循环比大为减小;能量回收利用率高;催化剂磨损少。缺点是三相反应器压降较大,液相内的扩散系数比气相小的多。(2) 液相法合成甲醇工艺 液相合成甲醇工艺的特点是采用活性更高的过度金属络合催化剂。催化剂均匀分布在液相介质中,不存在催化剂表面不均一性和内扩散影响问题,反应温度低,一般不超过200,20世纪80年代中期,美国Brookhaven国家实验室开发了活性很高的复合型催化剂,其结构为NaOH-RONa-M(OAc)2,其中M代表过渡金属Ni,Pd或Co,R为低碳烷基,当M为Ni,R为叔戊烷基时催化剂性能最好,液相介质为四氢呋喃,反应温度为80-120,压力为2MPa左右,合成气单程转化率高于80%,甲醇选择性高达96%。当该催化剂与第族金属的羰基络合物混合使用时,能得到更好的效果,他能激活CO,并有较好的耐硫性,当合成气中还有167010-6的H2S时,其甲醇产率仍达33%。 Mahajan等人研制了由过渡金属络合物与醇盐组成的符合催化剂,如四羰基镍和甲醇钾,以四氢呋喃为液相介质,反应温度为125,CO转化率大于90%,选择性达99%。 目前液相合成甲醇研究仍处在实验室阶段,尚未工业化,但它是一种很有开发前景的合成技术。该法的缺点是由于反应温度低,反应热不易回收利用;CO2和H2O容易使复合催化剂中毒,因此对合成气体的要求很苛刻,不能还有CO2和H2O,还需进一步研究。(3) 新型GSSTFR和RSIPR反应器系统 该系统采用反应,吸附和产物交换交替进行的一种新型反应装置。GSSTFR是指气-液-固滴流流动反应系统,CO和H2在催化剂的作用下,在此系统内进行反应合成甲醇,该甲醇马上被固态粉状吸附剂所吸附,并滴流带出反应系统。RSIPR是级间产品脱出反应系统,当以吸附气态甲醇的粉状吸附剂流入该系统时,与该系统内的液相四甘醇二甲醚进行交换,气态的甲醇被液相所吸附,然后再将四甘醇二甲醚中的甲醇分离出来。这样合成甲醇反应不断向右进行,CO的单程转化率可达100%,气相反应物不循环。这项新工艺仍处在研究之中,尚未投入工业生产,还有许多技术问题需要解决和完善。2.2.2本设计的合成工艺经过净化的原料气,经预热加压,于5 Mpa、220 下,从上到下进入Lurgi反应器,在铜基催化剂的作用下发生反应,出口温度为250 左右,甲醇7%左右,因此,原料气必须循环,则合成工序配置原则为图2-2。合成塔水冷器甲醇分离塔循环器甲醇的合成是可逆放热反应,为使反应达到较高的转化率,应迅速移走反应热,本设计采用Lurgi管壳式反应器,管程走反应气,壳程走4MPa的沸腾水驰放气粗甲醇图1合成工序配置原则2.3 本设计的主要方法及原理 造气工段:使用二步法造气 CH4+H2OCO+3H2 H=-205.85 kJ/mol CH4+O2CO2+2H2 H=+109.45 kJ/mol CH4+0.5O2CO+2H2 H=+35.6 kJ/mol CH4+2O2CO2+2H2O H=+802.3 kJ/mol 合成工段:5MPa下铜基催化剂作用下发生一系列反应 主反应 : CO+2H2CH3OH H=+102.37 kJ/kmol 副反应 : 2CO+4H2(CH3O)2+H2O H=+200.3 kJ/kmol CO+3H2CH4+ H2O H=+115.69 kJ/kmol 4CO+8H2C4H9OH+3H2O H=+49.62 kJ/kmol CO+H2CO +H2O H=-42.92 kJ/kmol反应热力学:一氧化碳加氢合成甲醇的反应式为:CO+2H2CH3OH(g)这是一个可逆放热反应,热效应:。当合成气中有CO2时,也可合成甲醇。 CO2 + 3H2 CH3OH(g) + H2O这也是一个可逆放热反应,热效应:合成法反应机理:本反应采用铜基催化剂,5 MPa,250 左右反应,反应模式为: H2+22H (1) CO+HHCO (2) HCO+H H2CO H2CO+2HCH3OH+3 CH3OH CH3OH+反应为(1)(2)控制。即吸附控制。2.4 甲醇合成反应的化学平衡 一氧化碳和氢气合成甲醇是一个气相可逆反应,压力对反应起着重要作用,反应温度也是影响平衡常数的一个重要因素,不同温度下的反应平衡常数见表2。其平衡常数随着温度的上升而很快减小,因此,甲醇合成不能在高温下进行。但是低温反应速率太慢,所以甲醇生产选用高活性的铜基催化剂,使反应温度控制在220280. 表2-1 不同温度下甲醇反应的平衡常数反应温度/平衡常数/Kp0667.3010012.922001.909*10-23002.42*10-44001.079*10-5三、工艺计算3.1 合成塔物料平衡计算工厂设计为年产精甲醇20万吨,开工时间为每年300天,采用连续操作,则每小时精甲醇的产量为27.78吨,即27.78 t/h。精馏工段通过三塔高效精馏工艺,精甲醇的纯度可达到99.9%,符合精甲醇国家一级标准。三塔精馏工艺中甲醇的收率达97%。则入预精馏塔的粗甲醇中甲醇量27.78 / 0.97=28.64t/h。由粗甲醇的组成通过计算可得下表: 表3-1 粗甲醇组成组分百分比产量甲醇93.41% 836.02kmol/h 即 18726.84m3/h 二甲醚0.43%2.68kmol/h 即 59.97 m3/h高级醇(以异丁醇计)0.28%1.08kmol/h 即24.27m3/h高级烷烃(以辛烷计)0.33%0.83kmol/h 即18.57m3/h水5.55%88.31kmol/h 即 1978.14m3/h粗甲醇100%28.87t/h计算方法:粗甲醇 =26.73 / 0.9340 = 28.64 t/h二甲醚 =28.640.42% = 130.29 kg/h 即2.68 kmol/h ,559.97 m3/h高级醇(以异丁醇计)= 28.640.26% = 74.46kg/h 即1.08kmol/h ,24.27m3/h高级烷烃(以辛烷计)=28.640.32% = 91.65 kg/h 即0.83kmol/h,18.57m3/h水 =28.645.6% = 1603.8 kg/h 即88.31kmol/h,1978.14m3/h合成甲醇的化学反应为:主反应:CO+2H2CH3OH+102.37 KJ/mol (1)副反应:2CO+4H2(CH3)2O+H2O+200.39 KJ/mol (2) CO+3H2CH4+H2O+115.69 KJ/mol (3) 4CO+8H2C4H9OH+3H2O+49.62 KJ/mol (4) CO2+H2CO+ H2O-42.92 KJ/mol (5)生产中,测得每生产1吨粗甲醇生成甲烷7.56 Nm3,即0.34 kmol,故CH4每小时生成量为:7.5614.78533=111.777 Nm3,即4.987 kmol/h,79.794 Kg/h。忽略原料气带入份,根据(2)、(3)、(4)得反应(5)生成的水的量为:48.43-0.604-0.05203-4.987=42.683 kmol/h,即在CO逆变换中生成的H2O为42.683 kmol/h,即956.13 Nm3/h。5.06 MPa,40时各组分在甲醇中的溶解度列表于表3-2表3-2 5.06Mpa,40时气体在甲醇中的溶解度组分H2COCO2N2ArCH4溶解度Nm3/t甲醇00.6823.4160.3410.3580.682Nm3/h01.0085.5010.5040.5291.008据测定:35 时液态甲醇中释放CO、CO2、H2等混合气中每立方米含37.14 g甲醇,假定溶解气全部释放,则甲醇扩散损失为:(1.008+5.501+0.504+0.529+1.008)= 0.318 kg/h即0.0099kmol/h,0.223 Nm3/h。设新鲜气量为G新鲜气,驰放气为新鲜气的9%。表3-3 驰放气组成组分H2COCO2CH4N2ArCH3OHH2OMol%79.316.293.504.793.192.300.610.01 G新鲜气G消耗气+G驰放气=G消耗气+0.09 G新鲜气=59821.42+0.09 G新鲜气 所以:G新鲜气65737.82 Nm3/h新鲜气组成见表3-4表3-4 甲醇合成新鲜气组成组分H2COCO2N2总计Nm344499.2519168.452047.083.2965737.82组成mol%67.69229.1593.1440.005100测得:甲醇合成塔出塔气中含甲醇7.12%。根椐表6,设出塔气量为G出塔。又知醇后气中含醇0.61%。所以: =7.12% G醇后=G新鲜-(G醇G副G扩)+GCH4= 65737.82-59821.42+112.785=6029.185 Nm3/h所以:G出塔272460.95Nm3/hG循环气= G出塔-G醇后-G生成+GCH4-G溶解=272460.95-6029.185-20686.502+112.785-7.571 =245850.477Nm3/h甲醇生产循环气量及组成见表3-5表3-5 甲醇生产循环气量及组成组分COCO2H2N2CH4ArCH3OHH2O合计流量:Nm3/h15463.998604.767194984.017842.6311776.245654.5611499.6924.585245850.477组成%(V)6.293.5079.313.194.792.300.610.01100G入塔= G循环气+G新鲜气=245850.477+65737.82=311588.297 Nm3/h由表3-4及表3-5得到表3-6。 表3-6 甲醇生产入塔气流量及组成 单位:Nm3/h组分COCO2H2N2CH4ArCH3OHH2O合计流量:Nm3/h34894.7710668.78239349.677808.40311721.955627.2851492.5124.927311588.297组成(V)%11.1993.42476.8162.5063.7621.8060.4790.008100又由G出塔= G循环气-G消耗G生成据表3-6得表3-7。表3-7 甲醇生产入塔气流量消耗及组成 单位:Nm3/h组分COCO2H2N2CH4ArCH3OHH2OC4H9OH(CH3)2O合计入塔34894.7710668.78239349.677808.40311721.955627.2851492.5124.927311588.29消耗18664.45961.60340194.860.5041.00859821.42生成111.77719444.391101.9332.32227.0620686.502出塔17145.498751.203198114.487805.78911941.635626.16220853.582185.0762.32227.06272453.37组成(V)6.2933.21272.7152.8654.3832.0657.6540.8020.0010.010100甲醇分离器出口气体和液体产品的流量、组成见表3-8。 表3-8甲醇分离器出口气体组成、流量:单位:Nm3/h组分COCO2H2N2CH4ArCH3OHC4H9OH(CH3)2OH2O合计损失1.0085.05100.5041.0080.5290.2118.311出气17144.4828746.152198114.477805.28511940.6225625.63320853.369270230.013组成(V)%6.3443.23773.3132.8884.4192.0827.717100出液19444.392.32227.061101.93320575.706组成mol%89.7370.0110.12510.127100重量kg27751.347.7055.56873.7028688.3组成(wt)%93.8050.0260.1885.981100甲醇驰放气流量及组成见表3-9。 表3-9 甲醇驰放气流量及组成组成COCO2H2CH4ArCH3OHH2O合计流量:Nm3/h190.117105.789397.166144.77996.41918.437微2925.707粗甲醇贮罐气流量及组成风表3-10。 表3-10 贮罐气组成、流量组成COCO2H2CH4ArCH3OHN2合计流量(Nm3/h)1.0085.05101.0080.5290.2110.5048.311组成(V)%12.12960.774012.1296.3652.5396.064100由表3-3到表3-10可得表3-11。 表3-11 甲醇生产物料平衡汇总表组分新鲜气循环气入塔气出塔气醇后气流量组成流量组成流量组成流量组成流量组成Nm3(v)%Nm3(v)%Nm3(v)%Nm3(v)%Nm3(v)%CO19168.4929.15915463.9956.2934894.7711.19917145.496.293881.2828.108CO22047.083.1448604.7673.5010668.783.4248751.2033.21295.1073.033H244499.2567.692194984.01379.31239349.6776.816198114.47572.7152045.99865.257N23.290.0057842.633.197808.4032.5067805.7892.8651.0860.035Ar5654.5612.305627.2851.8065626.1622.065CH411776.2384.7911721.9523.76211941.634.383112.7853.597CH3OH1499.6880.611492.5080.47920853.587.654C4H9OH2.3220.001(CH3)2O27.060.01H2O24.5850.0124.9270.0082185.0760.802微量/合计65718.11100245850.474100311588.295100272452.7871003135.308100甲醇合成塔分离器贮 罐冷 凝根椐计算结果,可画出甲醇生产物流图,如:图2 甲醇生产物流图循环气新鲜气驰放气入塔气醇后气粗甲醇 3.2粗甲醇精馏的物料平衡计算3.2.1 预塔的物料平衡(1).进料A.粗甲醇:28688.3kg/h。根据以上计算列表3-12表3-12组分甲醇二甲醚异丁醇水合计流量:kg/h27751.3455.567.70873.6328688.3组成:(wt)%93.8050.0260.1885.981100 B.碱液:据资料,碱液浓度为8%时,每吨粗甲醇消耗0.1 kg的NaOH。则消耗纯NaOH:0.128688.32.869 kg/h换成8%为:=35.863 kg/h C.软水:据资料记载。软水加入量为精甲醇的20%计,则需补加软水: 27751.3420%-35.863(1-8%)=5515.122 kg/h据以上计算列表3-13。表3-13 预塔进料及组成物料量:kg/hCH3OHH2ONaOH(CH3)2OC4H9OH合计粗甲醇27751.34873.6355.567.7028688.3碱液32.9942.86935.863软水5515.1225515.122合计27751.346421.7462.86955.567.7034239.215(2).出料 A.塔底。甲醇:27751.34 kg/h B.塔底水。粗甲醇含水:873.63kg/h 碱液带水:32.994 kg/h 补加软水:5515.122 kg/h 合计:6421.746kg/h C.塔底异丁醇及高沸物:7.70 kg/h D.塔顶二甲醚及低沸物:55.56 kg/h由以上计算列表3-14。表3-14 预塔出料流量及组成物料量:kg/hCH3OHH2ONaOH(CH3)2OC4H9OH合计塔顶55.5655.56塔底27751.346421.7462.8697.7034183.655合计27751.346421.7462.86955.567.7034239.2153.2.2 主塔的物料平衡计算(1).进料加压塔。预后粗甲醇:34183.655 kg/h常压塔。34183.655-27751.342/3=15682.76 kg/h(2).出料加压塔和常压塔的采出量之比为2:1,常压塔釜液含甲醇1%。A. 加压塔。塔顶:27751.342/3=18500.89kg/h 塔釜:15682.76kg/hB. 常压塔。塔顶:27751.341/399%=9157.94 kg/h 塔釜:甲醇 水 NaOH 高沸物 kg/h:92.5 6421.746 2.869 7.70 总出料:由以上计算。得表17甲醇精馏塔物料平衡汇总表:单位:kg/h 18500.89+6421.746+2.869+7.70+92.5+9157.94=34183.645得表3-15 甲醇精馏塔物料平衡汇总物料物料加压塔顶出料常压塔顶出料常压塔釜出料合计甲醇27751.3418500.899157.9492.527751.34NaOH2.8692.8692.869水6421.7466421.7466421.746高沸物7.707.707.70合计34175.95518500.899157.946524.81534175.955根椐计算结果可画出粗甲精馏物流图,见图3预精馏塔加压精馏塔常压精馏塔常压塔顶出料加压塔顶出料预塔顶出料 .粗甲醇软水碱液常压塔釜出料预塔底出料 图3 粗甲醇精馏物流图3.3 甲醇生产的能量平衡计算3.3.1 合成塔能量计算已知:合成塔入塔气为220 ,出塔气为250 ,热损失以5%计,壳层走4MPa的沸水。查化工工艺设计手册得,4 MPa下水的气化潜热为409.7 kmol/kg,即1715.00 kJ/kg,密度799.0 kg/m3,水蒸气密度为19.18 kg/m3,温度为250 。入塔气热容见表3-16。 表3-16 5MPa,220下入塔气除(CH3OH)热容组分COCO2H2N2ArCH4合计流量:Nm334894.7710668.78239349.677808.4035627.28511721.95310070.86比热:kJ/kmol30.1545.9529.3430.3521.4147.05/热量:kJ/23580.6510987.99157396.595312.062700.6912360.21212338.19查得220时甲醇的焓值为42248.46 kJ/kmol,流量为749.391 Nm3。所以:Q入=42248.46+212338.19220=2815007.35+46714401.8 =49529409.15 kJ出塔气热容除(CH3OH)见表3-17。 表3-17 5MPa,220下出塔气除(CH3OH)热容组分COCO2H2N2ArCH4C4H9OH(CH3)2OH2O合计流量:Nm317145.498751.203198114.487805.7895626.16211941.632.32227.062185.08251599.207比热:kJ/kmol30.1346.5829.3930.4121.3648.39170.9795.8583.49/热量:kJ/11579.359138.40130521.965321.882694.3912951.538.9059.714088.59176365.71查得250时甲醇的焓值为46883.2 kJ/kmol,流量为10471.692 Nm3。所以:Q出=46883.2+176365.71250=21917251.36+44091421.5 =66008672.86 kJ由反应式得:Q反应=102.37+200.39+115.69+49.62+(-42.92) 1000 =(88862.60+242.08+577.30+5.14-2130.80)1000 =87556320 kJ Q热损失=(Q入Q反应) 5%=(49529409.15+87556320) 5%=6854286.46 kJ所以:壳程热水带走热量 Q传 = Q入 + Q反应 - Q出 - Q热 =49529409.15+87556320-66008672.86-6854286.46 =64222769.83 kJ又:Q传=G热水r热水所以:G热水=37447.89 kg/h即时产蒸气:=1952.45m33.3.2 常压精馏塔能量衡算 Xf=0.448查化工工艺设计手册,甲醇露点温度t=74.8175操作条件:塔顶75,塔釜105,进料温度124,回流液温度40,取回流液与进料的比例为4:1。(1) 带入热量见表3-18。表3-18 常压塔入热物料进料回流液加热蒸汽组分甲醇水+碱甲醇流量:kg/h9259.9146730.3163960.896温度:12412440比热:kJ/kg2.684.262.68热量:kg/h3077254.623555218.966856608.06Q加热Q入=Q进料+Q回流液+Q加热=3077254.62+3555218.96+6856608.06+Q加热=13489081.64+ Q加热(2)带出热量见表3-19。表3-19 常压塔物料带出热量物料精甲醇回流液残液热损失组分甲醇甲醇甲醇水+碱流量:kg/h9157.9463960.89692.56730.31温度:7575105105比热:kJ/kg2.682.683.504.187潜热:kJ/kg1046.751046.75热量:kg/h11426819.6446331674.0434030.52958879.845%Q入所以:Q出11426819.6446331674.0434030.529588879.845%Q入 =60751404.02+5%Q入因为:Q出Q入所以:Q入= Q出=63948846.34kJ/h所以:Q蒸汽=50459764.7kJ/h已知水蒸气的汽化热为2118.6 kJ/kg所以:需蒸汽G3蒸汽=23817.5 kg/h常压精馏塔甲醇蒸汽75 40水 回流甲醇 加压塔底液体 40 30水 120 甲醇蒸汽 40 115 精甲醇 冷凝液 残液105甲醇115图4 常压塔物流图(3).冷却水用量计算对热流体:Q入Q产品精甲醇+Q回流液=11426819.64+46331674.04 =57758493.68kJ/hQ出 = Q精甲醇(液)+Q回流液(液)=9157.94402.68+6856608.06=7838339.228kJ/h Q传 =57758493.68(1-5%)-7838339.228=47032229.77kJ/h所以:冷却水用量G3水=1123.3 t水/h所以:每吨精甲醇消耗G3水=40.44t水/t精甲醇(4).常压塔精馏段热量平衡见表3-20。表3-20 精馏段热量平衡表带入热量:kJ/h带出热量:kJ/h加压塔来的甲醇:3077254.62采出热量精甲醇:11426819.64塔底供热:50459764.7内回流:g内(672.68+1046.75)内回流:g内(672.68)总入热:53537019.32+179.56g内总出热:11426819.64+1226.31g内所以:总入热=总出热所以:53537019.32+179.56g内=11426819.64+1226.31g内所以:g内=40229.47 kg/h(5).常压塔提馏段热量平衡见表3-21。 表3-21 提馏段热量平衡表带入热量:kJ/h带出热量:kJ/h加压塔来的甲醇:3555218.96残液:2992910.34塔底供热:50459764.7内回流:g内(672.68+1046.75)内回流:g内(672.68)总入热:54014983.66+179.56 g内总出热:2992910.34+1226.31g内因为:Q总入热+Q总出热即:54014983.66+179.56 g内=2992910.34+1226.31g内所以:g内=48743.32kg/h3.4 主要设备计算及选型设备是化
展开阅读全文