轴的加工工艺.doc

上传人:小** 文档编号:16604028 上传时间:2020-10-18 格式:DOC 页数:47 大小:614.50KB
返回 下载 相关 举报
轴的加工工艺.doc_第1页
第1页 / 共47页
轴的加工工艺.doc_第2页
第2页 / 共47页
轴的加工工艺.doc_第3页
第3页 / 共47页
点击查看更多>>
资源描述
课题:轴类零件加工工艺 一、 一、 教学目的:熟悉轴类零件加工的主要工艺,其中包括结构特点、技术要求分析、定位基准选择用一般工艺路线的拟定。掌握阶梯轴的加工工艺分析和工艺路线的拟订。 二、 二、 教学重点:轴类零件加工工艺分析 三、 三、 教学难点:轴类零件加工工艺路线的拟定 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: 第六章 第六章 典型零件加工第一节 第一节 轴类零件加工一、 一、 概述(一)、轴类零件的功用与结构特点1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及保证装在主轴上的工件或刀具具有一定的回转精度。2、 2、 分类:轴类零件按其结构形状的特点,可分为光轴、阶梯轴、空心轴和异形轴(包括曲轴、凸轮轴和偏心轴等)四类。图 轴的种类a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴h)曲轴 i) 凸 轮轴若按轴的长度和直径的比例来分,又可分为刚性轴(L/d12和挠性轴(L/d12)两类。3、表面特点:外圆、内孔、圆锥、螺纹、花键、横向孔(二)主要技术要求:1、尺寸精度 轴颈是轴类零件的主要表面,它影响轴的回转精度及工作状态。轴颈的直径精度根据其使用要求通常为IT69,精密轴颈可达IT5。2、几何形状精度轴颈的几何形状精度(圆度、圆柱度),一般应限制在直径公差点范围内。对几何形状精度要求较高时,可在零件图上另行规定其允许的公差。3、位置精度主要是指装配传动件的配合轴颈相对于装配轴承的支承轴颈的同轴度,通常是用配合轴颈对支承轴颈的径向圆跳动来表示的;根据使用要求,规定高精度轴为0.0010.005mm,而一般精度轴为0.010.03mm。此外还有内外圆柱面的同轴度和轴向定位端面与轴心线的垂直度要求等。4表面粗糙度 根据零件的表面工作部位的不同,可有不同的表面粗糙度值,例如普通机床主轴支承轴颈的表面粗糙度为Ra0.160.63um,配合轴颈的表面粗糙度为Ra0.632.5um,随着机器运转速度的增大和精密程度的提高,轴类零件表面粗糙度值要求也将越来越小。 (三)、轴类零件的材料和毛坯 合理选用材料和规定热处理的技术要求,对提高轴类零件的强度和使用寿命有重要意义,同时,对轴的加工过程有极大的影响。1、轴类零件的材料一般轴类零件常用45钢,根据不同的工作条件采用不同的热处理规范(如正火、调质、淬火等),以获得一定的强度、韧性和耐磨性。对中等精度而转速较高的轴类零件,可选用40Cr等合金钢。这类钢经调质和表面淬火处理后,具有较高的综合力学件能。精度较高的轴,有时还用轴承钢GCrls和弹簧钢65Mn等材料,它们通过调质和表面淬火处理后,具有更高耐磨性和耐疲劳性能。对于高转速、重载荷等条件下工作的轴,可选用20CrMnTi、20MnZB、20Cr等低碳含金钢或38CrMoAIA氮化钢。低碳合金钢经渗碳淬火处理后,具有很高的表面硬度、抗冲击韧性和心部强度,热处理变形却很小。2、轴类零件的毛坯轴类零件的毛坯最常用的是圆棒料和锻件,只有某些大型的、结构复杂的轴才采用铸件。 (四)、轴类零件的预加工 轮类零件在切削加工之前,应对其毛坯进行预加工。预加工包括校正、切断和切端面和钻中心孔。 1、校正:校正棒料毛坯在制造、运输和保管过程中产生的弯曲变形,以保证加工余量均匀及送料装夹的可靠。校正可在各种压力机上进行。2、切断:当采用棒料毛坯时,应在车削外圆前按所需长度切断。切断叮在弓锯床上进行,高硬度棒料的切断可在带有薄片砂轮的切割机上进行。3、切端面钻中心孔:中心孔是轴类零件加工最常用的定位基准面,为保证钻出的中心孔不偏斜,应先切端面后再钻中心孔。4、荒车:如果轴的毛坯是向由锻件或大型铸件,则需要进行荒车加工,以减少毛坯外国表面的形状误差,使后续工序的加工余景均匀。二、 二、 典型主轴类零件加工工艺分析轴类零件的加工工艺因其用途、结构形状、技术要求、产量大小的不同而有差异。而轴的工艺规程编制是生产中最常遇到的工艺工作。(一) (一)轴类零件加工的主要问题轴类零件加工的主要问题是如何保证各加工表面的尺寸精度、表面粗糙度和主要表面之间的相互位置精度。轴类零件加工的典型工艺路线如下:毛坯及其热处理预加工车削外圆铣键槽等热处理磨削(二) (二)CA6140主轴加工工艺分析1、CA6140主轴技术条件的分析(1)、支承轴颈的技术要求主轴两支承轴颈A、B的圆度允差 0.005毫米,径向跳动允差 0.005毫米,两支承轴颈的1:12锥面接触率70%,表面粗糙度Ra0.4um。支承轴颈直径按IT5-7级精度制造。主轴外圆的圆度要求,对于一般精度的机床,其允差通常不超过尺寸公差的50,对于提高精度的机床,则不超过25%,对于高精度的机床,则应在 510之间。 (2)、锥孔的技术要求主轴锥孔(莫氏 6号)对支承轴颈 A、B的跳动,近轴端允差 0.005mm,离轴端300mm处允差 0.01毫米,锥面的接触率 70,表面粗糙度Ra0.4um,硬度要求 HRC48。(3)、短锥的技术要求短锥对主轴支承轴颈A、B的径向跳动允差0.008mm,端面D对轴颈A、B的端面跳动允差0.008mm,锥面及端面的粗糙度均为Ra0.8um。(4)、空套齿轮轴颈的技术要求空套齿轮的轴颈对支承轴颈A、B的径向跳动允差为 0.015毫米。(5)、螺纹的技术要求这是用于限制与之配合的压紧螺母的端面跳动量所必须的要求。因此在加工主轴螺纹时,必须控制螺纹表面轴心线与支承轴颈轴心线的同轴度,一般规定不超过0.025mm。从上述分析可以看出,主轴的主要加工表面是两个支承轴颈、锥孔、前端短锥面及其端面、以及装齿轮的各个轴颈等。而保证支承轴颈本身的尺寸精度、几何形状精度、两个支承轴颈之间的同轴度、支承轴颈与其它表面的相互位置精度和表面粗糙度,则是主轴加工的关键。(三)、CA6140主轴加工工艺过程 看录像课题:轴类零件加工工艺 四、 四、 教学目的:熟悉轴类零件加工的主要工艺,其中包括结构特点、技术要求分析、定位基准选择用一般工艺路线的拟定。掌握阶梯轴的加工工艺分析和工艺路线的拟订。 五、 五、 教学重点:轴类零件加工工艺分析 六、 六、 教学难点:轴类零件加工工艺路线的拟定 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: (四)、主轴加工工艺过程分析1、 1、 主轴毛坯的制造方法及热处理批量:大批;材料:45钢;毛坯:模锻件(1)材料在单件小批生产中,轴类零件的毛坯往往使用热轧棒料。对于直径差较大的阶梯轴,为了节约材料和减少机械加工的劳动量,则往往采用锻件。单件小批生产的阶梯轴一般采用自由锻,在大批大量生产时则采用模锻。(2)热处理45钢,在调质处理(235HBS)之后,再经局部高频淬火,可以使局部硬度达到HRC6265,再经过适当的回火处理,可以降到需要的硬度(例如 CA6140主轴规定为 HRC52)。9Mn2V,这是一种含碳0.9%左右的锰钒合金工具钢,淬透性、机械强度和硬度均比45钢为优。经过适当的热处理之后,适用于高精度机床主轴的尺寸精度稳定性的要求。例如,万能外圆磨床 M1432A头架和砂轮主轴就采用这种材料。38CrMoAl,这是一种中碳合金氮化钢,由于氮化温度比一般淬火温度为低540550,变形更小,硬度也很高(HRC65,中心硬度HRC28)并有优良的耐疲劳性能,故高精度半自动外圆磨床MBG1432的头架轴和砂轮轴均采用这种钢材。此外,对于中等精度而转速较高的轴类零件,多选用40Cr等合金结构钢,这类钢经调质和高频淬火后,具有较高的综合机械性能,能满足使用要求。有的轴件也选用滚珠轴承钢如 GCr15和弹簧钢如 66Mn等材料这些钢材经调质和表面淬火后,具有极高的耐磨性和耐疲劳性能。当要求在高速和重载条件下工作的轴类零件,可选用18CrMnTi、20Mn2B等低碳含金钢,这些钢料经渗碳淬火后具有较高的表面硬度、冲击韧性和心部强度,但热处理所引起的变形比38CrMoAl为大。凡要求局部高频淬火的主轴,要在前道工序中安排调质处理(有的钢材则用正火), 当毛坯余量较大时(如锻件),调质放在粗车之后、半精车之前,以便因粗车产生的内应力得以在调质时消除;当毛坯余量较小时(如棒料),调质可放在粗车(相当于锻件的半精车)之前进行。高频淬火处理一般放在半精车之后,由于主轴只需要局部淬硬,故精度有一定要求而不需淬硬部分的加工,如车螺纹、铣键槽等工序,均安排在局部淬火和粗磨之后。对于精度较高的主轴在局部淬火及粗磨之后还需低温时效处理,从而使主轴的金相组织和应力状态保持稳定。2、定位基准的选择对实心的轴类零件,精基准面就是顶尖孔,满足基准重合和基准统一,而对于象CA6140A的空心主轴,除顶尖孔外还有轴颈外圆表面并且两者交替使用,互为基准。3、加工阶段的划分主轴加工过程中的各加工工序和热处理工序均会不同程度地产生加工误差和应力,因此要划分加工阶段。主轴加工基本上划分为下列三个阶段。(1)、粗加工阶段1)毛坯处理 毛坯备料、锻造和正火2)粗加工 锯去多余部分,铣端面、钻中心孔和荒车外圆等(2)、半精加工阶段)半精加工前热处理 对于45钢一般采用调质处理以达到220240HBS。 2)半精加工 车工艺锥面(定位锥孔) 半精车外圆端面和钻深孔等。(3)、精加工阶段1)精加工前热处理 局部高频淬火2)精加工前各种加工 粗磨定位锥面、粗磨外圆、铣键槽和花键槽,以及车螺纹等。3)精加工 精磨外圆和内外锥面以保证主轴最重要表面的精度。4、加工顺序的安排和工序的确定具有空心和内锥特点的轴类零件,在考虑支承轴颈、一般轴颈和内锥等主要表面的加工顺序时,可有以下几种方案。外表面粗加工钻深孔外表面精加工锥孔粗加工锥孔精加工; 外表面粗加工钻深孔锥孔粗加工锥孔精加工外表面精加工; 外表面粗加工钻深孔锥孔粗加工外表面精加工锥孔精加工。针对CA6140车床主轴的加工顺序来说,可作这样的分析比较:第一方案:在锥孔粗加工时,由于要用已精加工过的外圆表面作精基准面,会破坏外圆表面的精度和粗糙度,所以此方案不宜采用。第二方案:在精加工外圆表面时,还要再插上锥堵,这样会破坏锥孔精度。另外,在加工锥孔时不可避免地会有加工误差(锥孔的磨削条件比外圆磨削条件差人 加上锥堵本身的误差等就会造成外圆表面和内锥面的不同轴,故此方案也不宜采用。第三方案:在锥孔精加工时,虽然也要用已精加工过的外圆表面作为精基准面;但由于锥面精加工的加工余量已很小,磨削力不大;同时锥孔的精加工已处于轴加工的最终阶段,对外圆表面的精度影响不大;加上这一方案的加工顺序,可以采用外圆表面和锥孔互为基准,交替使用,能逐步提高同轴度。经过这一比较可知,象CA6140主轴这类的轴件加工顺序,以第三方案为佳。通过方案的分析比较也可看出,轴类零件各表面先后加工顺序,在很大程度上与定位基准的转换有关。当零件加工用的粗、精基准选定后,加工顺序就大致可以确定了。因为各阶段开始总是先加工定位基准面,即先行工序必须为后面的工序准备好所用的定位基准。例如CA6140主轴工艺过程,一开始就铣端面打中心孔。这是为粗车和半精车外圆准备定位基准;半精车外圆又为深孔加工准备了定位基准;半精车外圆也为前后的锥孔加工准备了定位基准。反过来,前后锥孔装上锥堵后的顶尖孔,又为此后的半精加工和精加工外圆准备了定位基准;而最后磨锥孔的定位基准则又是上工序磨好的轴颈表面。工序的确定要按加工顺序进行,应当掌握两个原则:1) 工序中的定位基准面要安排在该工序之前加工。例如,深孔加工所以安排在外圆表面粗车之后,是为了要有较精确的轴颈作为定位基准面,以保证深孔加工时壁厚均匀。2)对各表面的加工要粗、精分开,先粗后精,多次加工,以逐步提高其精度和粗糙度。主要表面的精加工应安排在最后。为了改善金属组织和加工性能而安排的热处理工序,如退火、正火等,一般应安排在机械加工之前。为了提高零件的机械性能和消除内应力而安排的热处理工序,如调质、时效处理等,一般应安排在粗加工之后,精加工之前。5、大批生产和小批生产工艺过程的比较(1)定位基准的选择表:不同生产类型下主轴加工定位基准的选择工 序 名 称定 位 基 准 面大 批 生 产小 批 生 产加工顶尖孔毛坯外圆划 线粗车外圆顶尖孔顶尖孔钻深孔粗车后的支承轴颈夹一端,托另一端半精车和精车两端锥堵的顶尖孔夹一端,顶另一端粗、精磨外锥两端锥堵的顶尖孔两端锥堵的顶尖孔粗、精磨外国两端锥堵的顶尖孔两端锥堵的顶尖孔粗、精磨难孔两支承轴颈外表面或靠近两支承轴颈的外圆表面夹小端,托大端 (2)轴端两顶尖孔的加工在单件小批生产时,多在车床或钻床上通过划线找正加工。在成批生产时,可在中心孔钻床上加工。专用机床可在同一工序中铣出两端面并打好顶尖孔。(3)外圆表面的加工在单件小批生产时,多在普通车床上进行;而在大批生产时,则广泛采用高生产率的多刀半自动车床或液压仿形车床等设备。 (4)深孔加工在单件小批生产时,通常在车床上用麻花钻头进行加工。在大批量生产中,可采用锻造的无缝钢管作为毛坯,从根本上免去了深孔加工工序;若是实心毛坯,可用深孔钻头在深孔钻床上进行加工;如果孔径较大,还可采用套料的先进工艺。(5)花键轴加工在单件小批生产时,常在卧式铣床上用分度头分度以圆盘铣刀铣削;而在成批生产(甚至小批生产)都广泛采用花键滚刀在专用花键轴铣床上加工。(6)前后支承轴颈以及与其有较严格的位置精度要求的表面精加工,在单件小批生产时,多在普通外圆磨床上加工;而在成批大量生产中多采用高效的组合磨床加工。(四)、主轴加工中的几个工艺问题1、 1、锥堵和锥堵心轴的使用 对于空心的轴类零件,若通孔直径较小的轴,可直接在孔口倒出宽度不大于2mm的60度锥面,代替中心孔。而当通孔直径较大时,则不宜用倒角锥面代之,一般都采用锥堵或锥堵心轴的顶尖孔作为定位基准。使用锥堵或锥堵心轴时应注意事项:(1)一般不中途更换或拆装,以免增加安装误差。(2)锥堵心轴要求两个锥面应同轴,否则拧紧螺母后会使工件变形。2、顶尖孔的研磨 因热处理、切削力、重力等的影响,常常会损坏顶尖孔的精度,因此在热处理工序之后和磨削加工之前,对顶尖孔要进行研磨,以消除误差。常用的研磨方法有以下几种。(1)用铸铁顶尖研磨(2)用油石或橡胶轮研磨(3)用硬质合金顶尖刮研(4)用中心孔磨床磨削2、 2、外圆加工方法 略4、深孔加工一般孔的深度与孔径之比 l/d5就算深孔。CA6140主轴内孔l/d=18,属深孔加工。(1) 加工方式加工深孔时,工件和刀具的相对运动方式有三种:1)工件不动,刀具转动并送进。这时如果刀具的回转中心线对工件的中心线有偏移或倾斜。加工出的孔轴心线必然是偏移或倾斜的。因此,除笨重或外形复杂而不便于转动的大型工件外,一般不采用。2)工件转动,刀具作轴向送进运动。这种方式钻出的孔轴心线与工件的回转中心线能达到一致。如果钻头偏斜,则钻出的孔有锥度;如果钻头中心线与工件回转中心线在空间斜交,则钻出的孔的轴向截面是双曲线,但不论如何,孔的轴心线与工件的回转中心线仍是一致的,故轴的深孔加够采用这种方式。3)工件转动,同时刀具转动并送进。由于工件与刀具的回转方向相反,所以相对切削速度大,生产率高,加工出来的孔的精度也较高。但对机床和刀杆的刚度要求较高,机床的结构也较复杂,因此应用不很广泛。(2)深孔加工的冷却与排屑在单件、小批生产中,加工深孔时,常用接长的麻花钻头,以普通的冷却润滑方式,在改装过的普通车床上进行加工。为了排屑,每加工一定长度之后,须把钻头退出。这种加工方法,不需要特殊的设备和工具。由于钻头有横刃,轴向力较大,两边切削刃又不容易磨得对称,因此加工时钻头容易偏斜。此法的生产率很低。在批量生产中,深孔加工常采用专门的深孔钻床和专用刀具,以保证质量和生产率。这些刀具的冷却和切屑的排出,很大程度上决定于刀具结构特点和冷却液的输入方法。目前应用的冷却与排屑的方法有两种:1)内冷却外排屑法加工时冷却液从钻头的内部输入,从钻头外部排出。高压冷却液直接喷射到切削区,对钻头起冷却润滑作用,并且带着切屑从刀杆和孔壁之间的空间排出。2)外冷却内排屑法 冷却液从钻头外部输入,有一定压力的冷却液经刀杆与孔壁之间的通道进入切削区,起冷却润滑作用,然后经钻头和刀杆内孔带着大量切屑排出。三、丝杆加工(一)、丝杠的功用、分类及结构特点1、丝杠的功用丝杠是将旋转运动变成直线运动的传动副零件,它被用来完成机床的进给运动。机床丝杠不仅要能传递准确的运动,而且还要能传递一定的动力。所以它在精度、强度以及耐磨性各个方面,都有一定的要求。2、丝杠的分类机床丝杠按其摩擦特性分: 滑动丝杠 滚珠丝杠丝杠 滚动丝杠静压丝杠 滚柱丝杠按其使用性能要求分:不淬硬丝杠丝杠淬硬丝杠 按其精度要求分:普通丝杠丝杠精密丝杠3、丝杠结构的工艺特点 丝杠是细而长的柔性轴,它的长径比往往很大,一般都在2050左右,刚度很差。加上其结构形状比较复杂,有要求很高的螺纹表面,又有阶梯及沟槽,因此,在加工过程中,很容易产生变形。这是丝杠加工中影响精度的一个主要矛盾。 (二)、丝杠的精度要求1、精度等级按丝杠的螺纹精度标准分,国家有标准。2、具体指标有:(1)单个螺距允差(2)中径圆度允差;(3)外径相等性允差;(4)外径跳动允差;(5)牙形半角允差;(6)中径为尺寸公差;(7)外径为尺寸公差;(8)内径为尺寸公差。(三)、丝杆加工的基本工艺路线:对不淬硬丝杠: 毛坯(热处理)校直车端面打中心孔外圆粗加工校直热处理重打中心孔(修正)外圆半精加工加工螺纹校直、低温时效修正中心孔外圆、螺纹精加工。对淬硬丝杠:毛坯(热处理)校直车端面打中心孔外圆粗加工校直热处理重打中心孔(修正)外圆半精加工加工螺纹淬火、回火探伤修正中心孔外圆、螺纹半精磨加工探伤修正中心孔外圆、螺纹精磨加工。(四)丝杠加工工艺主要问题分析 1、丝杠的校直及热处理: 丝杠工艺除毛坯工序外,在粗加工及半精加工阶段,都安排了校直及热处理工序。校直的目的是为了减少工件的弯曲度,使机械加工余量均匀。时效热处理以消除工件的残余应力,保证工件加工精度的稳定性。一般情况下,需安排三次。一次是校直及高温时效,它安排在粗车外圆以后,还有两次是校直及低温时效,它们分别安排在螺纹的粗加工及半精加工以后。2、定位基准面的加工: 丝杠两端的中心孔是定位基准面,在安排工艺路线时,应一首先将它加工出来,中心孔的精度对加工质量有很大影响,丝杠多选用带有120。保护锥的中心孔。此外,在热处理后,最后精车螺纹以前,还应适当修整中心孔以保持其精度。丝杠加工的定位基准面除中心孔外,还要用丝杠外圆表面作为辅助基准面,以便在加工中采用跟刀架,增加刚度。3、螺纹的粗、精加工 粗车螺纹工序一般安排在精车外圆以后,半精车及精车螺纹工序则分别安排在粗磨及精磨外圆以后。不淬硬丝杜一般采用车削工艺,经多次加工,逐渐减少切削力和内应力;对于淬硬丝杠,则采用“先车后磨”或“全磨”两种不同的工艺。后者是从淬硬后的光杜上直接用单线或多线砂轮粗磨出螺纹,然后用单线砂轮精磨螺纹。4、重钻中心孔:工件热处理后,会产生变形。其外圆面需要增加的加工余量,为减少其加工余量,而采用重钻中心孔的方法。在重钻中心孔之前,先找出工件上径向圆跳动为最大值的一半的两点,以这两点后作为定位基准面,用个端面的方法切去原来的中心孔,重新钻中心孔。当使用新的中心孔定位时,工件所必须切会的额外的加工余量将减少到原有值。课题:箱体类零件加工工艺 七、 七、 教学目的:了解箱体类零件加工的主要工艺问题,掌握拟定其工艺过程的主要原则,掌握各种孔系加工及保证其精度要求的常用方法和整体式箱体不同生产类型时的加工工艺及分离式箱体的加工工艺特点。 八、 八、 教学重点:各种孔系加工及其精度分析,箱体类零件的加工工艺分析 九、 九、 教学难点:箱体类零件的加工工艺分析 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: 第二节 箱体加工一、 一、 概述(一) (一) 箱体零件的功用及结构:1、 1、 功用:箱体是用来支承或安置其它零件或部件的基础零件。它将机器和部件中的轴、套、齿轮等有关零件连接成一个整体,并使之保持正确的相互位置,以传递转矩或改变转速来完成规定的动作。2、 2、 箱体的结构特点:箱体的壁厚较薄约1030mm且壁厚不均匀,形状比其它零件复杂。尽管箱体零件的结构形状随其在机器中的功用不同而有很大差别,但也有其共同的特点其内部呈腔形,在箱体壁上有多种形状的凸起平面及较多的轴承交承孔和紧固孔。这些平面和轴承孔的精度要求较高、粗糙度要求较低,且有较高的相互位置精度要求。箱体零件不但加工部位较多,而且加工的难度也较大。箱体的加工表面主要是平面和孔系。3、 3、 分类:箱体零件从结构功能上看可分为两大类: 整体式箱体分体式 (二) (二) 箱体零件的主要技术要求:1、孔的尺寸精度、几何形状精度和表面粗糙度。 一般情况下,主轴孔的尺寸精度为IT6,表面粗糙度Ra为1。60。4um,其他支承孔的尺寸精度一般应在孔的公差范围内,要求高的孔的形状公差不超过孔公差的1/21/3。2、支承孔之间的相互位置精度和孔距尺寸精度。 同轴孔之间应有一定的同轴度要求。否则,轴的装配困难,轴承的运转情况恶化,磨损加剧及温度升高,从而影响机器的精度和正常运转。 一般,各支承孔轴心线的平行度为(0.010.02)/100mm,主轴孔的同轴度为0.012mm,其他支承孔的同轴度为0.02mm。 3、主要平面的加工精度和表面粗糙度。 平面加工精度包括平面的形状精度和相互位置精度。因为箱体的主要平面往往是装配基面或是加工中的定位基面,故其加工精度直接影响机器的总装精度和加工时的定位精度。一般,主要平面的平面度为0.030.06mm;表面粗糙度 Ra为1.60.4um;平面间的平行度在全长范围内约为0.050.2mm;垂直度为0.1/300mm。 3、支承孔与主要平面间的尺寸精度及相互位置精度。 箱体上各支承孔对装配基面有一定的距离尺寸精度和平行度要求,对端面有一定的垂直度要求。这些精度要求都将影响箱体部件装配后的精度。 (三)、零件的材料与毛坯 一般箱体零件的材料多采用灰铸铁。常用牌号为HT150和HT200。 铸造毛坯的造型方式一般与生产批量有关。当单件小批生产时,采用木模手工造型,其缺点是毛坯铸造精度低,加工余量较大;当大批大量生产且毛坯尺寸不太大时,常采用金属模机器造型。这种毛坯的精度较高,加工余量可适当减小。根据工厂的生产经验,下列数据可供参考:一般平面的加工总余量为 612mm;孔半径方向的总余量为 515mm,对手工木模造型应取大值。成批生产直径小于30mm的孔,或单件小批生产直径小于50mm的孔,均不预先铸出。零件铸造后应进行时效处理,以便消除铸件内应力,保证其加工后精度的稳定性。 在单件小批生产条件下,形状简单的箱体也可采用钢板焊接。对其些特定场合,也可采用其它材料。如飞机发动机箱体,为减轻重量,常用镁铝合金。 二、零件的结构工艺性 箱体零件的结构形状比较复杂,不同的结构形状和使用要求有其不同的结构工艺性。下面仅从机械加工的角度,分析箱体零件结构工艺性的共性问题。 1、基本孔 箱体上的孔通常有通孔、阶梯孔、盲孔和相交孔等。通孔最为常见,其中以短圆柱孔为多。 在通孔内又以孔长L与孔径 D之比 L/D1.5的短圆柱孔工艺性为最好(箱体外壁上多为这种孔)。阶梯孔的工艺性与“孔径比”有关。孔径相差越小则工艺性越好;孔径相差越大,且其中最小孔径又很小,则工艺性越差。阶梯孔的孔径相差越小,其工艺性越好,若孔径相差较大,即存在较大的内端面时,则一般情况下,锪镗内端面比较困难,难以达到精度和表面粗糙度的要求。相贯通的交叉孔的工艺性也较差,如图所示,为改善工艺性,可将其中直径小的孔不铸通,先加工主轴大孔,再加工小孔。 盲孔的工艺性最差,不易加工,在精镗或精铰盲孔时,要用手动送进,其内端面更难加工,故盲孔的工艺性差,设计时应量避免。若结构上允许,可将盲孔钻通而改成阶梯孔,以改善其工艺性。 2、同轴线上的孔 同一轴线上孔径的大小向一个方向递减,可使镗孔时,镗杆从一端伸入,逐个加工或同时加工同轴线上的几个孔,以保证较高的同轴度和生产率。为使同轴线的各孔能同时加工,必须使相邻两孔的直径差大于加工余量,否则刀具无法通过前孔到达后孔的加工位置(如图所示)此外,在设有中间导向时如图所示,除导套直径 D2应小于前孔尺寸D1减去余量外,后孔尺寸D3也应小于导套尺寸D2,以免刀具刮中间导套。 同轴线上的孔的直径大小从两边向中间递减,可使刀杆从两边进入箱体加工同轴线上各孔,这样,不仅缩短了镗杆的长度,提高了镗杆的刚性,而且为双面同时加工创造了条件,所以大批大量生产的床头箱,常采用此种孔径分布形式。同轴线上孔的直径的分布形式,应尽量避免中间隔壁上的孔径大于外壁上的孔径。因为加工这种孔时,要将刀杆伸进箱体后装刀、对刀,结构工艺性差。3、工艺孔为加工或装配的需要,可增设必要的工艺孔。4、装配基面为便于加工和检验,箱体的装配基面尺寸应尽量大,形状应尽量简单。5、凸台 箱体外壁上的凸台应尽可能在一个平面上,以便可以在一次走刀中加工出来,而无须调整刀具的位置,使加工简单方便。6、紧固孔与螺孔箱体上的紧固孔和螺孔的尺寸规格应尽量一致,以减少刀具数量和换刀次数。此外,为保证箱体有足够的动刚度与抗振性,应酌情合理使用筋板、筋条,加大圆角半径,收小箱口,加厚主轴前轴承口厚度。三、箱体加工工艺过程及分析(一) (一) 箱体零件机械加工工艺过程:录像:1、某车床床头箱加工工艺过程整体式箱体2、某减速器箱体加工工艺过程分体式箱体课题:箱体类零件加工工艺 一、教学目的:了解箱体类零件加工的主要工艺问题,掌握拟定其工艺过程的主要原则,掌握各种孔系加工及保证其精度要求的常用方法和整体式箱体不同生产类型时的加工工艺及分离式箱体的加工工艺特点。 二、教学重点:各种孔系加工及其精度分析,箱体类零件的加工工艺分析 三、教学难点:箱体类零件的加工工艺分析 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: (二)箱体加工工艺分析:1、箱体类零件加工的一般工艺路线对于中小批生产,其加工工艺路线大致是:铸造划线平面加工孔系加工钻小孔攻丝;大批大量生产的工艺路线大致是:铸造加工精基准平面及两工艺孔粗加工其它各平面精加工精基准平面粗、精镗各纵向孔加工各横向孔和各次要孔钳工去毛刺。以上为整体式箱体的加工工艺路线,对于分离式箱体,同样按“先面后孔”及“粗、精分阶段加工”这两个原则安排工艺路线。但是整个加工过程必须先对箱盖和底座分别加工对合面、底面、紧固孔和定位销孔,然后再合箱加工轴承孔及其端面等。2、不同批量箱体生产的共性(1) (1) 加工顺序为先面后孔 (2) (2) 加工阶段粗、精分开 (3)工序间安排时效处理 普通精度的箱体,一般在铸造之后安排一次人工时效处理。一些高精度的箱体或形状特别复杂的箱体,在粗加工之后还要安排一次人工时效处理,以消除粗加工所造成的残余应力。 (4)一般都用箱体上的重要孔作粗基准 箱体零件的粗基准一般都用它上面的重要孔作粗基准,如主轴箱都用主轴孔作粗基准。3、不同批量箱体生产的特殊性(1)粗基准的选择 虽然箱体类零件一般都选择重要孔为粗基准,随着生产类型不同,实现以主轴孔为粗基准的工件装夹方式是不同的。中小批生产时,由于毛坏精度较低,一般采用划线装夹。大批大量生产时,毛坯精度较高,可采用夹具装夹。(2)精基准的选择箱体加工精基准的选择也与生产批量大小有关。单件小批生产用装配基准作定位基准。符合基准重合原则,消除了基准不重合误差,这种定位方式也有它的不足之处。刀具系统的刚度不足,当在箱体内部相应的部位设置镗杆导向支承时,由于箱体底部是封闭的,中间支承只能从箱体顶面的开口处把吊架伸入箱体内,每加工一件需装卸一次,且吊架刚性差,制造安装精度较低,经常装卸也容易产生误差,增加辅助时间,因此这种定位方式只适用于单件小批生产。大批量生产时采用一面双孔作为精基准。主轴箱常以顶面和两定位销孔为精基准,这种定位方式,箱口朝下,中间导向支架可固定在夹具上。由于简化了夹具结构,提高了夹具的刚度,同时工件装卸也比较方便,因而提高了孔系的加工质量和劳动生产率。应该指出:这一定位方式也存在一定的问题,由于定位基准与设计基准不重合,产生了基准不重合误差。为保证箱体的加工精度,必须提高作为定位基准的箱体顶面和两定位销孔的加工精度。(3)所用设备依批量不同而异 单件小批生产一般都在通用机床上加工,各工序原则上靠工人技术熟练程度和机床工作精度来保证。而大批量箱体的加工则广泛采用组合加工机床、专用夹具等,这就大大地提高了生产率。四、箱体零件的平面加工(略)五、箱体类零件的孔系加工孔系在箱体上一系列有相互位置精度要求的孔平行孔系孔系 同轴孔系交叉孔系孔系的加工方法不仅与生产规模有关,而且也与孔系的精度要求相关。下面分别介绍各 种孔系加工及其保证精度要求的方法。(一)、平行孔系加工平行孔系的主要技术要求是各孔中心线之间及孔中心线与基准面之间的距离尺寸精度和相互位置精度。平行孔系精度要求的方法有以下几种:1、找正法找正法是在通用机床上借助一些辅助装置去找正各个被加工孔的正确位置。(1)划线找正法(2)心轴块规找正法1、心轴 2、主轴 3、块规 4、塞尺 5、镗床工作台(3)样板找正法 2、镗模法 镗模是一种镗孔夹具。它既具有工件的定位夹紧装置,又有支承和引导镗刀杆的模板装置如图所示。由于镗杆与机床多采用浮动连接,故机床精度对加工精度的影响甚小。3、坐标法(1)定义:坐标法是把被加工孔之间的孔距尺寸换算为两个互相垂直的坐标尺寸,然后按此坐标尺寸,通过控制机床的坐标位移,精确地调整机床主轴与工件在水平和垂直方向的相对位置,以间接保证孔距精度。如图所示(2)测量装置:为保证工作台和主轴的位移精度,必须在镗床上加上坐标测量装置。 金属线纹尺 镗床坐标测量精密测量装置 光学读数头用块规和百分表的测量装置 光栅数字显示装置镗床测量装置 用游标尺加放大镜的测量装置 精密丝杆(加校正尺)坐标镗床的坐标精密测量装置 光电瞄准、光栅、磁尺激光干涉仪 (3)原始孔的选择首先加工的第一排孔应位于箱壁的一侧,依次加工其他各孔时,工作台只朝一个方向移动。原始孔还应有较高的尺寸精度和较低的表面粗糙度,以保证加工过程中重新校验坐标原点的准确性。另外,安排加工顺序时要把有孔距要求的两孔紧密地连在一起,以减少坐标尺寸的累积误差对孔距精度的影响。(二)同轴孔系加工在成批生产中为保证同轴孔系的同轴度常用镗模加工。单件小批生产时,在通用机床上加工,一般不采用镗模。这时可用如下方法保证同轴线孔的同轴度。1、利用已加工孔作交承导向如图所示,箱体前壁孔加工好后,在孔内装一导向套,借以支承和引导镗杆来加工后壁上的同轴孔。这种方法适用于加工前后两壁相隔较近时的同轴孔。一般需有专用的导套。2、利用镗床后立柱上的导向套作支承导向利用镗床后立柱上的导向套作支承导向解决了因镗杆悬伸过长而挠度大。进而影响同轴度的问题。但需用较长的镗杆,且后立柱导套的调整麻烦、费时。因此,适用于大型箱体的孔系加工。3、从箱体两侧进行镗孔从箱体两侧进行镗孔,即采用调头镗或两次装夹的办法。(三)、交叉孔系加工交叉(或相交)孔系主要应保证各孔的垂直度要求。加工时应先将精度要求高或表面粗糙度要求较低的孔全部加工好,然后加工另外与之相交叉(或相交)的孔。一般在普通镗床上用工作台上的直角对准装置进行加工控制。由于它是挡块装置,故结构简单,但精度较低。欲提高精度,可用芯棒与百分表找正法找正。六、孔系加工的精度分析 (一)、镗孔时的受力变形 1、镗杆受力变形的影响如果忽略工件材质和切削余量不均匀等所引起的切削力变化, 在镗孔过程中,相对于被加工孔表面Fyz力的方向随着镗杆的回传而不断改变,若由力Fyz所引起的刀尖径向位移为fF,则镗杆中心偏离了原来的理想中心,但刀尖的运动轨迹仍然呈圆形,所镗出孔的直径比原来减少2fF。镗杆自重镗杆自重的大小和方向是不变的,由力所产生的镗杆最大挠曲变形fQ也始终铅垂向下。如图看出,此时镗刀实际回转中心低于理想中心fQ值,刀尖的运动轨迹仍呈圆形,且圆的大小基本上不变。高速镗削时,fQ很小;低速精镗时,由于切削力及其所产生的fF较小,故相比之下fQ较大,即自重对孔加工精度的影响较大。 实际上,镗杆在每一瞬间的挠曲变形,是切削力和自重所产生的挠曲变形的合成。而且,由于材质和加工余量的不均匀、切削用量的不一及镗杆伸出长度的变化等,故镗杆的实际回转中心在镗孔过程中作无规律变化,从而引起孔系加工的多种误差。 由上分析可知,为了减少镗杆的挠曲变形,以提高孔系加工的几何精度和相对位置精度,通常可采用下列措施: 1)加大镗杆直径和减小悬伸长度; 2)采用导向装置,以约束镗杆挠曲变形; 3)减小镗杆自重和切削力对挠曲变形的影响。 2、镗床受力变形的影响 镗床的受力变形主要产生在主轴本身和主轴轴承上。3、工件夹紧变形的影响 (二)、镗杆与导套几何形状精度及配合间隙的影响 当采用固定式导向装置时,镗杆轴颈在导套内回转。精镗时,由于Fyz故切削力不能抬起镗杆。随着镗杆的回转,镗杆轴颈表面以不同部位沿导套内孔下方一小范围内接触。因此,镗杆及导套内孔的圆度误差将引起被加工孔的圆度误差。如图所示: (三)、镗削方式的影响 1、悬臂镗、镗杆送进 采用镗杆送进时,在镗杆不断伸长过程中,由于切削力的作用,使刀尖的挠度值不断增大。切削力与自重综合对被加工孔的影响见图b,使孔径不断减小,轴线弯曲。 图a 图b 2、悬臂镗工作台送进(图a) 虽然刀尖在切削力与重力作用下有挠度,但由于采用工作台送进,镗刀伸出长度不变,这个挠度为定值。所以被加工孔的孔径减小一个定值,同时孔的直线性好图b所示。此法的缺点是,机床工作台导轨的不直度会引起孔轴线的偏移和弯曲。当工作台送进方向与主轴回转轴线不平行时,会使孔出现椭圆度。当然,如前所述,这项误差并不十分严重。图a 图b3、支承镗、工作台送进(图a)显然,由于工作台送进,两支承点间距离很长,要超过孔长的两倍。但由于是支承镗,其刀尖挠度比以上的减小一倍 本方案的特征和方案2相同,即孔轴线的直线性好,孔径尺寸只均匀减小一个更小的定值。4、支承镗、镗杆送进 本方案镗杆伸出长度不变。当刀尖处于两支承中间时,切削力产生的挠度比方案3小: 所以,抗振性好,但是,由于是镗杆送进,故键刀在支承间的位置是变化的,因而镗杆自重造成的弯曲度就会影响工件孔轴线的弯曲误差,所以尽管本方案镗杆变形比方案小,但因轴线的弯曲不易进一步纠正。故并不如方案3好。5、在镗模里加工 本方案和前四个方案相比,其变形最小。但由于镗模是和工件以一个整体送进的,在镗削过程中,刀尖处的挠度是一个变值,故镗出的孔的轴线是弯曲的。而纠正孔轴线的弯曲度是不容易的。6、双支承镗、工作台送进这时虽然这时镗杆的跨距比方案4大一倍,但因仅仅由工件送进,双支承与刀具的相对位置关系未变,所以刀尖挠度为定值,加工出的孔的轴线是直的。就这一点看,比工件镗模里加工又有优越之处。课题: 齿轮零件的加工工艺(圆盘类)一、教学目的:掌握各种齿形加工方法的加工原理、工艺特点、及应用场合。了解齿轮加工的主要技术要求、主要工艺问题及一般工艺路线。掌握普通精度齿轮的加工工艺分析及工艺过程拟定。一般了解蜗轮轮齿的加工方法及其工艺特点。 二、教学重点:各种齿形加工的加工原理及工艺特点、普通精度齿轮的加工工艺分析及工艺过程拟定。 三、教学难点:齿轮的加工工艺分析 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: 第三节 齿轮加工一、 一、 概述(一) (一) 齿轮的功用与结构特点1、 1、 功用:按规定的速比传递运动和动力。2、 2、 结构 轮体 齿圈3、 3、 分类 直齿 (1)按齿圈的分布形式 斜齿 人字齿 盘形最广泛 套筒 (2)按轮体 轴 扇形 齿条 (二) (二) 齿轮的技术要求:齿轮传动有如下几方面的精度要求:1、传递运动的准确性。2、工作的平稳性。3、齿面接触的均匀性。4、有一定的齿侧间隙。在我国GB10095-88标准中规定了齿轮传动有12个精度等级,精度由高到低依次为1级、2级12级。其中常用的精度等级为69级。7级精
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 人力资源


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!