示波器实验报告

上传人:daj****de 文档编号:162493618 上传时间:2022-10-18 格式:DOCX 页数:15 大小:20.37KB
返回 下载 相关 举报
示波器实验报告_第1页
第1页 / 共15页
示波器实验报告_第2页
第2页 / 共15页
示波器实验报告_第3页
第3页 / 共15页
点击查看更多>>
资源描述
示波器实验报告示波器实验报告【实验题目】 示波器的原理和使用【实验目的】1. 了解示波器的基本机构和工作原理,掌握使用示波器和 信号发生器的基本方法。2. 学会使用示波器观测电信号波形和电压副值以及频率。3. 学会使用示波器观察李萨如图并测频率。【实验原理】1. 示波器都包括几个基本组成部分:示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大 电路(x放大)、扫描信号电路(锯齿波发生器)、同步电路、电 源等。2. 李萨如图形的原理:如果示波器的X和Y输入时频率相同或成简单整数比的两 个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图 称为李萨如图形。如果作一个限制光点x、y方向变化范围的假想方框,则 图形与此框相切时,横边上的切点数 nx 与竖边上的切点数 ny 之比恰好等于Y与x输入的两正弦信号的频率之比,即fy:fx=nx:ny。【实验仪器】示波器x1,信号发生器x2,信号线x2。【实验内容】1. 基础操作:了解示波器工作原理的基础上阅读所用机器的说明书,了 解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和 纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧 光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直 放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的 展开或压缩,次旋钮为两个,分别控制示波器的两个输入信 号。明确操作步骤及注意事项后,接通示波器电源开关。先找 到扫描线并调至清晰。2. 观测李萨如图形:向 CH1、CH2 分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“x-Y”方式(即使两路信号进行合 成)。调出不同比值的李萨如图形来,画出草图,并分析图形 的特点与两个信号频率之间的关系。绘出所观察到的各种频率 比的李萨如图形。设 fx=1000H 为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较, 一一求出它们的相对误差。【实验数据】【实验结果】【误差分析】1. 两台信号发生器不协调。2. 桌面振动造成的影响。3. 示波器上显示的荧光线较粗,取电压值时的荧光线间宽 度不准,使电压值不准。4. 取正弦周期时肉眼调节两荧光线间宽度不准,导致周期 不准。5. 机器系统存在系统误差。6. fy 选取时上下跳动,可能取值不准。相关知识1 示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的 交变电信号转换成图像,显示在荧光屏上以便测量的电子测量 仪器。它是观察数字电路实验现象、分析实验中的问题、测量 实验结果必不可少的重要仪器。示波器由示波管和电源系统、 冋步系统、x轴偏转系统、Y轴偏转系统、延迟扫描系统、标 准信号源组成。1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。它将电 信号转换为光信号。正如图 1 所示,电子枪、偏转系统和荧光 屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波 管。1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光 材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电 子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作 用,有利于提高亮点的辉度。铝膜还有散热等其他作用。当电子停止轰击后,亮点不能立即消失而要保留一段时 间。亮点辉度下降到原始值的 10%所经过的时间叫做“余辉时 间”。余辉时间短于 10μs 为极短余辉, 10μs1ms 为 短余辉,1ms0.1s为中余辉,0IsTs为长余辉,大于Is为 极长余辉。一般的示波器配备中余辉示波管,高频示波器选用 短余辉,低频示波器选用长余辉。由于所用磷光材料不冋,荧光屏上能发出不冋颜色的光。 一般示波器多采用发绿光的示波管,以保护人的眼睛。2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A 1)和第二阳极(A2)组成。它 的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴 极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒, 套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起 控制作用,一般只有运动初速度大的少量电子,在阳极电压的 作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回 阴极。如果栅极电位过低,则全部电子返回阴极,即管子截 止。调节电路中的 W1 电位器,可以改变栅极电位,控制射向 荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、 第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆 筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位 对阴极电子奔向荧光屏起加速作用。电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。 第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的 第一电子透镜。第二次聚焦发生在 G2、A1、A2 区域,调节第 二阳极 A2 的电位,能使电子束正好会聚于荧光屏上的一点, 这是第二次聚焦。A1 上的电压叫做聚焦电压,A1又被叫做聚 焦极。有时调节 A1 电压仍不能满足良好聚焦,需微调第二阳 极A2的电压,A2又叫做辅助聚焦极。3. 偏转系统偏转系统控制电子射线方向,使荧光屏上的光点随外加信 号的变化描绘出被测信号的波形。图8.1中,Yl、Y2和xl、 x2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,x 轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y 轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电 场,分别控制电子束在垂直方向和水平方向偏转。4. 示波管的电源 为使示波管正常工作,对电源供给有一定要求。规定第二 阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为 零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(一 30V100V),而且可调,以实现辉度调节。第一阳极为正电 位(约+100V+600V),也应可调,用作聚焦调节。第二阳极与 前加速极相连,对阴极为正高压(约+1000V),相对于地电位的 可调范围为±50V。由于示波管各电极电流很小,可以 用公共高压经电阻分压器供电。1.2 示波器的基本组成从上一小节可以看出,只要控制x轴偏转板和Y轴偏转板 上的电压,就能控制示波管显示的图形形状。我们知道,一个 电子信号是时间的函数f(t),它随时间的变化而变化。因 此,只要在示波管的x轴偏转板上加一个与时间变量成正比的 电压,在y轴加上被测信号(经过比例放大或者缩小),示波管 屏幕上就会显示出被测信号随时间变化的图形。电信号中,在 一段时间内与时间变量成正比的信号是锯齿波。示波器的基本组成框图如图2所示。它由示波管、Y轴系 统、x轴系统、Z轴系统和电源等五部分组成。被测信号接到“Y “输入端,经Y轴衰减器适当衰减后 送至Y1放大器(前置放大),推挽输出信号和。经延迟级 延迟1时间,到Y2放大器。放大后产生足够大的信号和 ,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的 稳定波形,将Y轴的被测信号引入x轴系统的触发电路,在 引入信号的正(或者负)极性的某一电平值产生触发脉冲,启 动锯齿波扫描电路(时基发生器),产生扫描电压。由于从触 发到启动扫描有一时间延迟2,为保证Y轴信号到达荧光屏 之前x轴开始扫描,Y轴的延迟时间1应稍大于x轴的延迟 时间2。扫描电压经x轴放大器放大,产生推挽输出和 ,加到示波管的x轴偏转板上。轴系统用于放大扫描电压正 程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正 程显示的波形有某一固定辉度,而在扫描回程进行抹迹。以上是示波器的基本工作原理。双踪显示则是利用电子开 关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率 高到一定程度后,看到的是两个稳定的、清晰的信号波形。示波器中往往有一个精确稳定的方波信号发生器,供校验 示波器用。2 示波器使用本节介绍示波器的使用方法。示波器种类、型号很多,功 能也不同。数字电路实验中使用较多的是20MH或者40MH的双 踪示波器。这些示波器用法大同小异。本节不针对某一型号的 示波器,只是从概念上介绍示波器在数字电路实验中的常用功 能。2.1 荧光屏荧光屏是示波管的显示部分。屏上水平方向和垂直方向各 有多条刻度线,指示出信号波形的电压和时间之间的关系。水 平方向指示时间,垂直方向指示电压。水平方向分为10格, 垂直方向分为 8 格,每格又分为 5 份。垂直方向标有 0%, 10%,90%,100%等标志,水平方向标有 10%,90%标志,供测 直流电平、交流信号幅度、延迟时间等参数使用。根据被测信 号在屏幕上占的格数乘以适当的比例常数(V/DIV, TIME/DIV) 能得出电压值与时间值。2.2 示波管和电源系统1. 电源(Power)示波器主电源开关。当此开关按下时,电源指示灯亮,表 示电源接通。2. 辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。3. 聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。4. 标尺亮度(Illuminance) 此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明 灯。2.3 垂直偏转因数和水平偏转因数1. 垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏 移灵敏度,这一定义对x轴和Y轴都适用。灵敏度的倒数称为 偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者 DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者 V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便, 有时也把偏转因数当灵敏度。踪示波器中每个通道各有一个垂直偏转因数选择波段开 关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如 波段开关置于 1V/DIV 档时,如果屏幕上信号光点移动一格, 则代表输入信号电压变化 1V。每个波段开关上往往还有一个小旋钮,微调每档垂直偏转 因数。将它沿顺时针方向旋到底,处于“校准”位置, 此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转 此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造 成与波段开关的指示值不一致,这点应引起注意。许多示波器 具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若 干倍(偏转因数缩小若干倍) 。例如,如果波段开关指示的偏转 因数是1V/DIV,采用x5扩展状态时,垂直偏转因数是 0.2V/DIV。在做数字电路实验时,在屏幕上被测信号的垂直移动距离 与+5V信号的垂直移动距离之比常被用于判断被测信号的电压 值。2. 时基选择(TIME/DIV)和微调时基选择和微调的使用方法与垂直偏转因数选择和微调类 似。时基选择也通过一个波段开关实现,按 1、2、5 方式把时 基分为若干档。波段开关的指示值代表光点在水平方向移动一 个格的时间值。例如在 1μS/DIV 档,光点在屏上移动一格 代表时间值 1μS。“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底 处于校准位置时,屏幕上显示的时基值与波段开关所示的标称 值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫 描扩展状态。通常为X10扩展,即水平灵敏度扩大10倍,时 基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光 屏上水平一格代表的时间值等于 2μSX(1/10)=0.2μS示波器的标准信号源CAL,专门用于校准示波器的时基和 垂直偏转因数。例如 COS5041 型示波器标准信号源提供一个 VP-P=2V,f=1kH 的方波信号。示波器前面板上的位移(Position)旋钮调节信号波形在荧 光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移 动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动 信号波形。2.4 输入通道和输入耦合选择1.输入通道选择输入通道至少有三种选择方式:通道1 (CH1)、通道 2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1 的信号。选择通道 2 时,示波器仅显示通道 2 的信号。选择双 通道时,示波器同时显示通道 1 信号和通道 2 信号。测试信号 时,首先要将示波器的地与被测电路的地连接在一起。根据输 入通道的选择,将示波器探头插到相应通道插座上,示波器探 头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“X1 ”位置时, 被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号 的实际电压值。此开关拨到“X10”位置时,被测信号衰减为1 / 1 0 ,然后送往示波器,从荧光屏上读出的电压值乘以1 0才 是信号的实际电压值。2.输入耦合方式输入耦合方式有三种选择:交流(AC)、地(GND)、直流 (DC)。当选择“地”时,扫描线显示出“示波器地”在 荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极 低频信号。交流耦合用于观测交流和含有直流成分的交流信 号。在数字电路实验中,一般选择“直流”方式,以便观测信 号的绝对电压值。2.5 触发第一节指出,被测信号从 Y 轴输入后,一部分送到示波管 的 Y 轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动; 另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生 器,产生重复的锯齿波电压加到示波管的x偏转板上,使光点 沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就 是被测信号图形。由此可知,正确的触发方式直接影响到示波 器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波 形,掌握基本的触发功能及其操作方法是十分重要的。1. 触发源(Source)选择要使屏幕上显示稳定的波形,则需将被测信号本身或者与 被测信号有一定时间关系的触发信号加到触发电路。触发源选 择确定触发信号由何处供给。通常有三种触发源:内触发 (INT)、电源触发内触发使用被测信号作为触发信号,是经常 使用的一种触发方式。由于触发信号本身是被测信号的一部 分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道 1 或者通道 2 都可以选作触发信号。电源触发使用交流电源频率信号作为触发信号。这种方法 在测量与交流电源频率有关的信号时是有效的。特别在测量音 频电路、闸流管的低电平交流噪音时更为有效。外触发使用外加信号作为触发信号,外加信号从外触发输 入端输入。外触发信号与被测信号间应具有周期性的关系。由 于被测信号没有用作触发信号,所以何时开始扫描与被测信号 无关。正确选择触发信号对波形显示的稳定、清晰有很大关系。 例如在数字电路的测量中,对一个简单的周期信号而言,选择 内触发可能好一些,而对于一个具有复杂周期的信号,且存在 一个与它有周期关系的信号时,选用外触发可能更好。2. 触发耦合(Coupling)方式选择触发信号到触发电路的耦合方式有多种,目的是为了触发 信号的稳定、可靠。这里介绍常用的几种。AC 耦合又称电容耦合。它只允许用触发信号的交流分量 触发,触发信号的直流分量被隔断。通常在不考虑DC分量时 使用这种耦合方式,以形成稳定触发。但是如果触发信号的频 率小于10H,会造成触发困难。直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。低频抑制(LFR)触发时触发信号经过高通滤波器加到触发 电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触 发信号通过低通滤波器加到触发电路,触发信号的高频成分被 抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发 耦合方式各有自己的适用范围,需在使用中去体会。3. 触发电平(Level)和触发极性(Slope)触发电平调节又叫同步调节,它使得扫描与被测信号同 步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超 过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋 钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平 旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅 度之内,不需要电平调节就能产生一个稳定的触发。当信号波 形复杂,用电平旋钮不能稳定触发时,用释抑(Hold Off)旋钮 调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同 步。极性开关用来选择触发信号的极性。拨在“+”位置上 时,在信号增加的方向上,当触发信号超过触发电平时就产生 触发。拨在“-”位置上时,在信号减少的方向上,当触发信 号超过触发电平时就产生触发。触发极性和触发电平共同决定 触发信号的触发点。2.6 扫描方式(SweepMode)扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描 方式。自动:当无触发信号输入,或者触发信号频率低于50H 时,扫描为自激方式。常态:当无触发信号输入时,扫描处于准备状态,没有扫 描线。触发信号到来后,触发扫描。单次:单次按钮类似复位开关。单次扫描方式下,按单次 按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到 来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用 于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、x-Y工作方式等, 这里就不介绍了。示波器入门操作是容易的,真正熟练则要在 应用中掌握。值得指出的是,示波器虽然功能较多,但许多情 况下用其他仪器、仪表更好。例如,在数字电路实验中,判断 一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测 量单脉冲脉宽时,用逻辑分析仪更好一些。
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!