资源描述
8.3空间点、直线、平面之间 的位置关系知识梳理考点自测1.平面的基本性质 两点 同一条直线上的三点 知识梳理考点自测有且只有一条 知识梳理考点自测平行 相交 任何 锐角(或直角)知识梳理考点自测4.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.5.直线与平面的位置关系有平行、相交、在平面内三种情况.6.平面与平面的位置关系有平行、相交两种情况.知识梳理考点自测1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.知识梳理考点自测知识梳理考点自测1.判断下列结论是否正确,正确的画“”,错误的画“”.(1)两个不重合的平面只能把空间分成四个部分.()(2)两个平面,有一个公共点A,就说,相交于A点,记作=A.()(3)已知a,b是异面直线,直线c平行于直线a,则c与b不可能是平行直线.()(4)两个不重合的平面,有一条公共直线a,就说平面,相交,并记作=a.()(5)若a,b是两条直线,是两个平面,且a,b,则a,b是异面直线.()知识梳理考点自测2.如图,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1D解析解析:只有B1C1与EF在同一平面内,是相交的.选项A,B,C中直线与EF都是异面直线,故选D.知识梳理考点自测3.已知a,b是异面直线,直线c平行于直线a,则c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线C解析解析:由已知得,直线c与b可能为异面直线,也可能为相交直线,但不可能为平行直线,若bc,则ab,与已知a,b为异面直线相矛盾.知识梳理考点自测4.(2017全国,文6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A知识梳理考点自测解析解析:易知选项B中,ABMQ,且MQ平面MNQ,AB平面MNQ,则AB平面MNQ;选项C中,ABMQ,且MQ平面MNQ,AB平面MNQ,则AB平面MNQ;选项D中,ABNQ,且NQ平面MNQ,AB平面MNQ,则AB平面MNQ.故排除选项B,C,D.故选A.知识梳理考点自测5.下列命题正确的个数为.经过三点确定一个平面;梯形可以确定一个平面;两两相交的三条直线最多可以确定三个平面;若两个平面有三个公共点,则这两个平面重合.2解析解析:经过不共线的三点可以确定一个平面,不正确;两条平行线可以确定一个平面,正确;两两相交的三条直线可以确定一个或三个平面,正确;命题中没有说清三个点是否共线,不正确.考点一考点二考点三平面的基本性质及应用平面的基本性质及应用例1(1)如图所示,四边形ABEF和ABCD都是直角梯形,BAD=FAB=90,G,H分别为FA,FD的中点.四边形BCHG的形状是;点C,D,E,F,G中,能共面的四点是.(2)在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC与BD交于点M,则点O与直线C1M的关系是.平行四边形 C,D,E,F 点O在直线C1M上 考点一考点二考点三考点一考点二考点三(2)如图所示,因为A1C平面A1ACC1,OA1C,所以O平面A1ACC1,而O是平面BDC1与直线A1C的交点,所以O平面BDC1,所以点O在平面BDC1与平面A1ACC1的交线上.因为ACBD=M,所以M平面BDC1.又M平面A1ACC1,所以平面BDC1平面A1ACC1=C1M,所以OC1M.考点一考点二考点三思考共面、共线、共点问题的证明有哪些方法?解题心得共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:首先由所给条件中的部分线(或点)确定一个平面,然后证其余的线(或点)在这个平面内;将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:先由两点确定一条直线,再证其他各点都在这条直线上;直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.考点一考点二考点三对点训练对点训练1(1)如图,=l,A,B,C,且Cl,直线ABl=M,过A,B,C三点的平面记作,则与的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M(2)以下四个命题中:不共面的四点中,其中任意三点不共线;若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;若直线a,b共面,直线a,c共面,则直线b,c共面;依次首尾相接的四条线段必共面.正确命题的个数是()A.0B.1C.2D.3DB考点一考点二考点三解析解析:(1)A,B,MAB,M.又=l,Ml,M.根据公理3可知,M在与的交线上.同理可知,点C也在与的交线上.(2)正确,否则三点共线和第四点必共面;错,如图三棱锥,能符合题意,但A,B,C,D,E不共面;从的几何体知,错;由空间四边形可知,错.考点一考点二考点三空间两条直线的位置关系空间两条直线的位置关系(多考向多考向)考向1两直线位置关系的判定例2a,b,c为三条不重合的直线,已知下列结论:若ab,ac,则bc;若ab,ac,则bc;若ab,bc,则ac.其中正确的个数为()A.0B.1C.2D.3B 解析解析:方法一:在空间中,若ab,ac,则b,c可能平行,也可能相交,还可能异面,所以错误,显然成立.方法二:构造长方体或正方体模型可快速判断,错误,正确.思考如何比较直观地判断两直线的位置关系?考点一考点二考点三考向2异面直线的判定例3如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线.其中正确的结论为(把你认为正确的结论序号都填上).解析解析:因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故错;取DD1中点E,连接AE,则BNAE,但AE与AM相交,故错;因为点B1与直线BN都在平面BCC1B1内,点M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故正确;同理正确.故填.考点一考点二考点三思考空间两条直线位置关系的判定方法有哪些?考点一考点二考点三考向3异面直线所成的角例4(2017全国,理10)已知直三棱柱ABC-A1B1C1中,ABC=120,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()C解析解析:方法一:如图,取AB,BB1,B1C1的中点M,N,P,连接MN,NP,PM,可知AB1与BC1所成的角等于MN与NP所成的角.考点一考点二考点三考点一考点二考点三思考求异面直线所成角的方法有哪些?考点一考点二考点三解题心得1.点、线、面之间的位置关系可借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.2.空间两条直线位置关系的判定方法考点一考点二考点三3.求解异面直线所成角的方法 考点一考点二考点三对点训练对点训练2(1)若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()A.l1l4B.l1l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定DD考点一考点二考点三(3)在图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有.(填上所有正确答案的序号)考点一考点二考点三(4)(2017四川成都三诊,文8)在我国古代数学名著九章算术中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A考点一考点二考点三解析解析:(1)l1与l在平面内,l2与l在平面内,若l1,l2与l都不相交,则l1l,l2l,根据直线平行的传递性,则l1l2,与已知矛盾,故l至少与l1,l2中的一条相交.(2)构造如图所示的正方体ABCD-A1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1l4,当取l4为BB1时,l1l4,故排除A,B,C,选D.考点一考点二考点三(3)图中,直线GHMN;图中,G,H,N三点共面,但M平面GHN,因此直线GH与MN异面;图中,连接GM,则GMHN,因此GH与MN共面;图中,G,M,N共面,但H平面GMN,因此GH与MN异面.所以在图中,GH与MN异面.(4)如图所示,分别取AB,AD,BC,BD的中点E,F,G,O,则EFBD,EGAC,FOOG,FEG为异面直线AC与BD所成角.考点一考点二考点三空间中线面的位置关系空间中线面的位置关系例5设直线m与平面相交但不垂直,则下列说法正确的是()A.在平面内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面垂直C.与直线m垂直的直线不可能与平面平行D.与直线m平行的平面不可能与平面垂直B 考点一考点二考点三解析解析:如图,m是平面的斜线,PA,l,lAB,则lm,平面内所有与l平行的直线都垂直于m,故A错;由题意可知过m有且只有一个平面PAB与平面垂直,假设有两个平面都与平面垂直,则这两个平面的交线m应与平面垂直,与条件矛盾,故B正确;又l,ll,l,lm,lm,故C错;又在平面内取不在直线AB上的一点D,过D可作平面与平面PAB平行,m,平面PAB,平面,故D错.考点一考点二考点三思考如何借助空间图形确定线面位置关系?解题心得解决这类问题的关键就是熟悉直线与直线、直线与平面、平面与平面的各种位置关系及相应的公理定理,归纳整理平面几何中成立但立体几何中不成立的命题,并在解题过程中注意避免掉入由此设下的陷阱.判断时可由易到难进行,一般是作图分析,构造出符合题设条件的图形或反例来判断.考点一考点二考点三对点训练对点训练3已知正方体ABCD-A1B1C1D1,点P,Q,R分别是线段B1B,AB和A1C上的动点,观察直线CP与D1Q,CP与D1R,给出下列结论:对于任意给定的点P,存在点Q,使得D1QCP;对于任意给定的点Q,存在点P,使得CPD1Q;对于任意给定的点P,存在点R,使得D1RCP;对于任意给定的点R,存在点P,使得CPD1R.其中正确的结论是.(填序号)考点一考点二考点三解析解析:当点P与B重合时,DD1CP,若D1QCP,又DD1D1Q=D1,则CP平面DD1Q,CPDQ,此时,在AB上不存在点Q使CPDQ,所以错误;当点P与B1重合时,CPAB,且CPAD1,所以CP平面ABD1.因为对于任意给定的点Q,都有D1Q平面ABD1,所以对于任意给定的点Q,存在点P,使得CPD1Q,所以正确;只有CP垂直D1R在平面BCC1B1中的射影时,D1RCP,所以正确;当点R与A1重合时,D1RB1C1,若D1RCP,则B1C1CP,此时在BB1上不存在点P使B1C1CP,所以错误.考点一考点二考点三1.公理1是判断一条直线是否在某个平面内的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.考点一考点二考点三1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.
展开阅读全文