资源描述
第六章 高斯投影及换带计算,一、高斯投影概述 (正形投影,高斯坐标正反算及换带计算) 二、把椭球面元素归算到高斯投影面 (方向改化,距离改化) 三、各种投影方法概述,本章提要,本章介绍从椭球面上大地坐标系到平面上直角坐标系的正形投影过程。研究如何将大地坐标、大地线长度和方向以及大地方位角等向平面转化的问题。重点讲述高斯投影的原理和方法,解决由球面到平面的换算问题,解决相邻带的坐标坐标换算。,知识点及学习要求 1高斯投影的基本概念; 2正形投影的一般条件; 3高斯平面直角坐标与大地坐标的相互转换 高斯投影的正算与反算 4椭球面上观测成果归化到高斯平面上的计算; 5高斯投影的邻带换算; 6工程测量投影面与投影带的选择。,难点在对本章的学习中,首先要理解和掌握高斯投影的概念。高斯正算和反算计算;方向改化和距离改化计算;高斯投影带的换算与应用;工程测量中投影面与投影带的选择。,6.1 地图投影概述,1.投影与变形,所谓地图投影,简略说来就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影学。,椭球面是一个凸起的、不可展平的曲面,若将这个曲面上的元素(比如一段距离、一个角度、一个图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称作投影的变形,投影面上的边长与原面上的相应长度之比,称为长度比。,长度比:,2、地图投影的分类,1)按变形性质分类 (1)等角投影 又称为正形投影。投影面上某点的任意两方向线夹角与椭球面上相应两线段夹角相等,即角度变形为零。等角投影在一点上任意方向的长度比都相等,但在不同地点长度比是不同的。 (2)等积投影 在投影平面上任意一块面积与椭球面上相应的面积相等,即面积变形等于零。 (3)等距投影 定义为沿某一特定方向的距离,投影前后保持不变,即沿着该特定方向长度比为1。在这种投影图上并不是不存在长度变形,它只是在特定方向上没有长度变形。,2)按投影面的形状分类 (1)方位投影:以平面作为投影面,使平面与球面相切或相割,将球面上的经纬线投影到平面上而成。 (2)圆柱投影:以圆柱面作为投影面,使圆柱面与球面相切或相割,将球面上的经纬线投影到圆柱面上,然后将圆柱面展为平面而成。 (3)圆锥投影:以圆锥面作为投影面,使圆锥面与球面相切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展为平面而成。,3、中国各种地图投影:1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方位投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割圆锥投影。 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投影(宽带)。 3)中国大比例尺地图的投影:多面体投影(北洋军阀时期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯-克吕格投影(解放以后)。,从世界范围看,各国大中比例尺地形图所使用的投影很不统一,据不完全统计有十几种之多,最常用的有横轴等角椭圆柱投影等。中华人民共和国成立后,我国大中比例尺地形图一律规定采用以克拉索夫斯基椭球体元素计算的高斯-克吕格投影。我国新编1:100万地形图,采用的则是边纬与中纬变形绝对值相等的正轴等角圆锥投影。,4、常用的几种地图投影,1、控制测量对地图投影的要求,1)等角投影(又称正形投影),2)长度和面积变形不大,并能用简单公式计算由变形而引起的改正数。,3)能很方便地按分带进行,并能按高精度的、简单的、同样的计算公式和用表把各带联成整体 。,6.2 高斯投影概述(重点),高斯投影是等角横切椭圆柱投影。 高斯投影是一种等角投影。它是由德国数学家高斯(Gauss,1777 1855)提出,后经德国大地测量学家克吕格(Kruger,18571923)加以补充完善,故又称“高斯克吕格投影”,简称“高斯投影”。,2、高斯投影的基本概念,N,S,c,中央,子,午线,赤道,1).高斯投影的原理:,高斯投影采用分带投影。将椭球面按一定经差分带,分别进行投影。,2)、高斯投影必须满足: (1)高斯投影为正形投影, 即等角投影; (2)中央子午线投影后为直 线,且为投影的对称轴; (3)中央子午线投影后长度 不变。,3)、高斯投影的特点:,(1)中央子午线投影后为直线,且长度不变。 (2) 除中央子午线外,其余子午线的投影均为凹向中央子午线的曲线,并以中央子午线为对称轴。投影后有长度变形。 (3) 赤道线投影后为直线,但有长度变形。,赤道,中央子午线,平行圈,子午线,O,x,y,(4) 除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。 (5)经线与纬线投影后仍然保持正交。 (6) 所有长度变形的线段,其长度变形比均大于l。 (7)离中央子午线愈远,长度变形愈大。,赤道,中央子午线,平行圈,子午线,O,x,y,4)、投影带的划分,我国规定按经差6和3进行投影分带。 6带自首子午线开始,按6的经差自西向东分成60个带。 3带自1.5 开始,按3的经差自西向东分成120个带。,高斯投影带划分,6带与3带中央子午线之间的关系如图:,3带的中央子午线与6带中央子午线及分带子午线重合,减少了换带计算。,工程测量采用3 带,特殊工程可采用1.5 带或任意带,按照6带划分的规定,第1带中央子午线的经度为3,其余各带中央子午线经度与带号的关系是: L。=6N3 (N为6带的带号) 例:20带中央子午线的经度为: L。6 203117 按照3带划分的规定,第1带中央子午线的经度为3,其余各带中央子午线经度与带号的关系是: L。=3n (n为3带的带号) 例:120带中央子午线的经度为 L。3 120360 ,若已知某点的经度为L,则该点的6带的带号N由下式计算: 若已知某点的经度为L,则该点所在3带的带号按下式计算: (四舍五入),高斯平面直角坐标系的建立:,x轴 中央子午线的投影 y轴 赤道的投影 原点O 两轴的交点,O,x,y,P,(X,Y),高斯自然坐标,注:X轴向北为正, y轴向东为正。,赤道,中央子午线,由于我国的位于北半球,东西横跨12个6带,各带又独自构成直角坐标系。 故:X值均为正, 而Y值则有正有负。,x,y,o,500km,=500000+ = 636780.360m = 500000+ = 227559.720m,国家统一坐标:,(带号),(带号),例: 有一国家控制点的坐标: x=3102467.280m ,y=19367622380m, (1)该点位于6 带的第几带? (2)该带中央子午线经度是多少? (3)该点在中央子午线的哪一侧? (4)该点距中央子午线和赤道的距离为多少?,(第19带),(L。=619-3=111),(先去掉带号,原来横坐标y367622.380500000-132377.620m,在西侧),(距中央子午线132377.620m,距赤道3102467.280m),不同点: 1、 x,y轴互异。 2、 坐标象限不同。 3、表示直线方向的方位角 定义不同。 相同点: 数学计算公式相同。,高斯平面直角坐标系与数学上的笛卡尔平面直角坐标系的异同点 :,3、椭球面三角系化算到高斯平面,将椭球面三角系归算到高斯投影面的主要内容是:,将起始点的大地坐标B,L归算为高斯平面直角坐标x,y;为了检核还应进行反算,亦即根据x,y反算B,L。 通过计算该点的子午线收敛角及方向改正,将椭球面上起算边大地方位角归算到高斯平面上相应边的坐标方位角。 通过计算各方向的曲率改正和方向改正,将椭球面上各三角形内角归算到高斯平面上的由相应直线组成的三角形内角。 通过计算距离改正,将椭球面上起算边的长度归算到高斯平面上的直线长度。 当控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。,6.3高斯投影坐标正反算公式(了解),1、高斯投影坐标正算公式: B,l x,y,高斯投影必须满足以下三个条件: 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。,对于任何一种投影:坐标对应关系是最主要的;如果是正形投影,除了满足正形投影的条件外,还有它本身的特殊条件。,2、高斯投影坐标反算公式:x,y B,l,满足以下三个条件: x坐标轴投影后为中央子午线是投影的对称轴; x坐标轴投影后长度不变; 投影具有正形性质,即正形投影条件。,当B=0时x=X=0,y则随l的变化而变化,这就是说,赤道投影为一直线且为y轴。当l=0时,则y=0,x=X,这就是说,中央子午线投影亦为直线,且为x轴,其长度与中央子午线长度相等。两轴的交点为坐标原点。 当l=常数时(经线),随着B值增加,x值增大,y值减小,这就告诉我们,经线是凹向中央子午线的曲线,且收敛于两极。又因,即当用-B代替B时,y值不变,而x值数值相等符号相反,这就说明赤道是投影的对称轴。 当B=常数时(纬线),随着的l增加,x值和y值都增大,这就是说,纬线是凸向赤道的曲线。又当用-l代替l时,x值不变,而y值数值相等符号相反,这就说明,中央子午线是投影对称轴。由于满足正形投影条件,所以经线和纬线的投影是互相垂直的。 距中央子午线愈远的子午线,投影后弯曲愈厉害,表明长度变形愈大。,3、高斯投影坐 标正反算公式的 几何解释 :,练习1. 已知某点的坐标:B = 290405.3373 L = 1211033.2012 计算:1). 该点的3 带和6 带带号; 2). 该点的3 带高斯投影坐标并反 算检核;,子午线收敛角的概念 如右图所示,、 及 分别为椭球面点、过点的子午线 及平行圈 在高斯平面上的描写。由图可知,所谓点 子午线收敛角就是 在 上的切线 与 坐标北之间的夹角,用 表示。 在椭球面上,因为子午线同平行圈正交,又由于投影具有正形性质,因此它们的描写线 及 也必正交,由图可见,平面子午线收敛角也就是等于 在 点上的切线同平面坐标系横轴 的倾角。,6.4.1 平面子午线收敛角公式(了解),6.4 椭球面上的方向和长度归算至高斯平面,在中央子午线上l=0,r=0;在赤道上B=0,r=0。,在同一经线上(l=常数)纬度愈高,r的绝对值也愈大,在极点处最大;在同一纬线上(B=常数),经差l的绝对值愈大,r的绝对值也愈大。,r为奇函数,有正负,当描写点在中央子午线以东时,经差为正,r也为正;当描写点在中央子午线以西时,经差为负,r也为负。,1、求的公式,2.由高斯平面坐标x,y计算:,6.4.2 方向改化公式(重点),方向改正数就是指大地线的投影曲线和连接大地线两点的弦之夹角。,我国二等三角网平均边长为13KM,当ym250km时,上式精确至0.01,故通常用于二等三角测量计算。,方向改化数计算公式:,我国三四等三角网平均边长为10KM范围内,可对上式简化,该式精确为0.1。,6.4.3 距离改化公式(重点),由S化至D所加的S改正称为距离改正,当S70km,ym350km(6带的边缘) 计算精度小于0.001m,对于一等边长的归算完全可满足要求,对于二等边长的归算可略去 项,对于三四等边长的归算又可再略去 项。,1 距离改换公式,2、距离改化的实用计算公式,一等三角网的距离改正的实用公式:,二等三角网的距离改正的实用公式:,三等三角网以下的距离改正的实用公式:,产生换带的原因 高斯投影为了限制高斯投影的长度变形,以中央子午线进行分带,把投影范围限制在中央子午线东、西两侧一定的范围内。因而,使得统一的坐标系分割成各带的独立坐标系。在工程应用中,往往要用到相邻带中的点坐标,有时工程测量中要求采用 带、 带或任意带,而国家控制点通常只有 带坐标,这时就产生了 带同 带(或 带、任意带)之间的相互坐标换算问题,如下图所示:,6.5 高斯投影的邻带换算(了解),需要进行坐标邻带换算的情况: 1、控制网跨越两个投影带; 2、在分界子午线附近地区测图,需要用到另一带 的三角点作为控制点时; 3、6带、3带、1.5带之间的换算。,坐标邻带换算的一般方法: 把椭球面上的大地坐标作为过渡坐标,首先把某投影带(如21带)内的有关点的平面坐标x,y利用高斯投影反算公式换算成椭球面上的大地坐标B,L。然后再由大地坐标B,L利用投影正算公式换算成相邻带的(如22带)的平面坐标。,计算步骤:,根据,利用高斯反算公计算换算,,得到 ,。 采用已求得的,,并顾及到第带的中央子午线, 求得,利用高斯正算公式计算第带的直角坐 标 , 。 为了检核计算的正确性,要求每步都应进行往返计算,算例 在中央子午线 的带中,有某一点的平面直角坐标,现要求计算该点在中央子午线 的第带的平面直角坐标。,1、地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。,6.6 有关投影的基本知识(了解),2、地图投影的变形 1)长度变形 2)面积变形 3)角度变形,1 墨卡托(Mercator)投影,墨卡托投影为正轴等角切圆柱投影,是由墨卡托于1569年专门为航海目的设计的。其设计思想是令一个与地轴方向一致的圆柱切于或割于地球,将球面上的经纬网按等角条件投影于圆柱表面上,然后将圆柱面沿一条母线剪开展成平面,即得墨卡托投影 。 该投影的经纬线是互为垂直的平行直线,经线间隔相等,纬线间隔由由赤道向两极逐渐扩大。图上任取一点,由该点向各方向长度比皆相等,即角度变形为零。在正轴等角切圆柱投影中,赤道为没有变形的线,随纬度增高面积变形增大。,UTM投影全称为“通用横轴墨卡托投影” (Universal Transverse Mercator Projection ),是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。UTM投影分带方法与高斯-克吕格投影相似,是自西经180起每隔经差6度自西向东分带,将地球划分为60个投影带。,(1)UTM是对高斯投影的改进,改进的目的是为了减少投影变形。(2)UTM投影的投影变形比高斯的要小,最大在0.001。但其投影变形规律比高斯要复杂一点,因为它用的是割圆柱,所以,它的m1的地方是在割线上,实际上是一个圆,处在正负140的位置,距离中央经线大约180km。(3)UTM投影在中央经线上,投影变形系数m0.9996,而高斯投影的中央经线投影的变形系数m1。(4)UTM为了减少投影变形也采用分带,它采用6分带。但起始的1带是(e174e180),所以,UTM的6分带的带号比高斯的大30。(5)很重要的一点, 高斯投影与UTM投影可近似计算。计算公式是:XUTM=0.9996 * X高斯YUTM=0.9996 * Y高斯这个公式的误差在1米范围内,完全可以接受。,UTM与高斯投影的异同:,2、兰勃特投影(等角圆锥投影),设有一个圆锥,其轴与地轴一致,套在地球椭球体上,然后将椭球体面的经纬线网按照等角的条件投影到圆锥面上,再把圆锥面沿母线切开展平,即得到正轴等角圆锥投影的经纬网图形。其中纬线投影成为同心圆弧,经线投影成为向一点收敛的直线束。当圆锥面与椭球体上的一条纬圈相切时,称切圆锥投影,见图(a);当圆锥面相割于椭球面两条纬圈时,称割圆锥投影,见图(b)。,相切或相割纬圈称为标准纬圈,显然,标准纬圈在圆锥展开后不变。两条纬线间的经线长度处处相等。投影的不同变形性质,只是反映在纬线间隔的变化上。也就是说,圆锥投影的各种变形都是纬度的的函数,而与经度无关。对某一个具体的变形性质而言,在同一条纬线上,其变形值相等。在同一条经线上,标准纬线外侧为正变形,两条标准纬线之间为负变形。因此切圆锥投影只有正变形,割圆锥投影既有正变形又有负变形。 由于圆锥投影具有上述的变形分布规律,因此该投影适于编制处于中纬地区沿纬线方向东西延伸地域的地图。由于地球上广大陆地均位于中纬地区,同时圆锥投影的经纬网又比较简单,该投影得到了广泛应用。尤其是正轴割圆锥投影,使用非常普遍。 我国新编1:100万地形图,使用的便是边纬与中纬变形绝对值相等的等角割圆锥投影。等角割圆锥投影还广泛应用于我国编制出版的全国1:400万、1:600万挂图,以及全国性的普通地图和专题地图等。,
展开阅读全文