影响磷酸铁锂性能的因素及解决办法

上传人:小*** 文档编号:154323707 上传时间:2022-09-20 格式:DOC 页数:2 大小:29.50KB
返回 下载 相关 举报
影响磷酸铁锂性能的因素及解决办法_第1页
第1页 / 共2页
影响磷酸铁锂性能的因素及解决办法_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
磷酸铁锂材料的优点不再赘述,确实是一种非常有前途的正极材料,但也存在致命的缺点,这里主要谈一下磷酸铁锂的主要缺点:1、电子电导率se低,在10-9s/cm量级;离子传输率si低,在10-11s/cm量级,二者直接导致电极传输率sw低(sw二sexsi/se+si)2、振实密度低3、低温性能差零下20度以下容量大打折扣上述问题不能有效解决磷酸铁锂很难应用于电动汽车,解决电导率低的问题可通过C包覆、离子掺杂的方法解决。磷酸铁锂本身是不良导体,电导率低直接影响到大功率充放电限制了大功率锂离子电池的使用范围,尤其是用于电动汽车,未解决这个问题当前普遍采用的办法是在磷酸铁锂表面包覆C以提高其电导性能,同时研究表明通过包C还可以提升磷酸铁锂的低温性能。另外一个可行的办法是通过离子掺杂使磷酸铁锂晶格中出现自由电子或空穴从而提升电导性能。解决锂离子传输性能的方法是在磷酸铁锂橄榄石一维锂离子通道结构不能改变的前提下只能通过减小粒径缩短离子传输路径来实现,这就要求实现磷酸铁锂材料的纳米化,为了进一步提高振实密度还要求粒子球形化,这些都是固相法合成工艺所不能实现的,要实现这一目的湿化学法是一个不错的选择。虽然上述缺点都有相应的解决办法但是实际操作中却较为复杂,包碳在解决电导率问题的同时使振实密度更小,材料纳米化了容量也还可以但到了极片涂覆工艺时可操作性大幅下降。我们正在探索液相结晶法实现纳米化的同时又不影响涂覆性能,并取得一些进展。磷酸铁锂材料的理想形貌,是在不影响或者对容量影响不大的前提下实现纳米化但还不能影响涂覆性能。在这里抛砖引玉欢迎同行一起交流,因希望在业界能形成良好的氛围,不要光关注于几千吨的产量,叫我们群策群力在性能方面做些工作,似乎更有益。本人没有做过磷酸铁锂,不过本人有些纳米复合材料方面的经验,兴许对楼主有点借鉴。理想的磷酸铁锂电极材料,按照楼主罗列的问题,本人理解应该是具有球形形貌,数个微米级的大小,粒径分布较窄。微米球具有二级亚结构,由纳米磷酸铁锂颗粒黏结形成。纳米磷酸铁锂是炭包覆的杂原子掺杂磷酸铁锂,纳米颗粒之间还有一定的空隙度。微米球形形貌可以保证较高的堆积密度,而镶嵌在其中的纳米颗粒网络这可以保证电子电导和锂离子传输。是不是这样的,楼主?一般来说,象这种具有二级亚结构的多孔材料,可以从前驱体多步制备,也可以得到纳米颗粒以后再二次造粒。不过对于磷酸铁锂来说,似乎从前驱体逐步制备这种亚结构的微米球难度很大,由纳米磷酸铁锂二次造粒的可能性要大些。二次造粒是粉体材料制备中经常采用的办法,一般大概分为干法和湿法两大种。干法就是二次烧结,因为磷酸铁锂已经掺杂并且包炭了,二次烧结制备微米球似乎不大现实(炭不好办,与其它物象相容性不佳)。湿法(液相法)应该更加可行些。可以把纳米磷酸铁锂和炭源(比如沥青)用适当有机溶剂均匀混合,然后加入水和适当的表面活性剂超声波分散,这样磷酸铁锂和炭源就可以以微米球分散在水相里形成前驱体。通过适当的方法可以将这种微米球结构分离保留下来,比如萃取或者喷雾干燥等等。将得到的微米球前驱体热解,就可以得到最后的微米球形磷酸铁锂复合材料了。本人以前用上叙方法制备过球形纳米复合材料,不知道对磷酸铁锂是否适用,楼主可以试试。关于磷酸铁锂材料来讲国内发展的比较疯狂,但更多的是一些政府行为,现在多采用固相合成法,但是当前国内的工业化水平,原材料的预处理很难做到理想效果,材料的性能也是参差不齐。这个领域真正想做事的人很少,大家都比较浮躁,更多的是挖人上马、炒作圈钱的经营模式,没有几家注重后期的研发,而高校的研发又比较脱离生产实际。我们的固相法工艺技术和日本韩国比起来还是有较大差距,而日韩之所以没有量产LFP更多的是忌惮专利问题,但技术储备是已经完成的。如果专利保护期过后,日韩的产能放出后我们国内的厂家又有几家能够顶的住。与其上马固相法新项目不如做好自己的技术储备留点资金过三两年收购破产工厂来的合算。这个火热的行业需要冷思考。为什么纳米磷酸铁锂颗粒振实密度低?我认为这个与颗粒的分散性/团聚状态/粒度分布曲线及堆积方式有关.假设颗粒全部为同样大小单晶球状颗粒,按照六方最密堆积方式,则不管颗粒粒度多大,其堆积密度都是一致的,如果颗粒由两种不同大小的单晶球状颗粒组成,小的颗粒刚好可以填充到大颗粒最密堆积后形成的空隙里面,则堆积密度变高了,按照这种方式,颗粒堆积密度还可以更高。因此在粉末全部由绝对分散的一次颗粒组成的理想情况下,只要颗粒的PSD分布曲线形状一致,其振实密度也是一致的,跟中位径无关。但是实际情况不是这样,颗粒是呈团聚状态的,一次颗粒首先会互相粘结成为较为疏散的二次颗粒,假设一种情况,所有一次颗粒大小一致,每10个一次颗粒团聚为同样大小的二次颗粒,近似球形,然后所有二次颗粒按照六方最密堆积方式进行堆积,显然,这种情况下的堆积密度是比不上全部为分散颗粒情况下的堆积密度的。我认为这种二次团聚的颗粒还能进一步团聚成更大的二次颗粒,再堆积,造成堆积密度更低。一般而言,对于同种材料,在颗粒粒度越小的情况下,颗粒之间的团聚也更加容易发生,当然颗粒的表面性质也会对团聚产生巨大影响。一个显然的例子,在采用高速分散或者研磨等方式对粉末处理后,其振实密度一般都能得到提高。振实和你材料本身性质以及中位粒度息息相关,和你材料本身的性质关系更大一些。某种材料本身的性质以及你的制备工艺就已经决定了这种材料的TD,磷酸铁锂颗粒本身就不密实,只有通过改性可以略微提高一些这方面的性能,但是帮助不算很大。再怎么做你也不可能和三元和钴酸锂去比较。所以磷酸铁锂材料振实很低时极其正常的现象,市面上的铁锂振实都不高。而纳米级别的磷酸铁锂相对于微米级别的来说,振实也要更低一些,这主要是因为中位粒度较小的原因。而中位粒度较小对于振实的影响并不是楼上几位说的简单的填充,而在于很多情况下,晶体生长的越大,长的时间越长,长的就越好,越密实(密度会更大一些),所以,在同样条件下做的同样的材料,大中位粒度的材料的振实一般都会比小粒度的要高。所以纳米级别的铁锂振实相对于微米级别的铁锂要低至于填充的问题,的确也会影响TD,但是是否填充的比较紧密,空隙较少取决于材料的粒度分布(也就是D10,D50,D90构成的峰型图是否很宽),一般粒度分布越宽,TD也会越高。所以,材料的TD最大取决于其本身性质。其次取决于其粒度大小,再次取决于粒度分布。而纳米磷酸铁锂的TD小,主要还是主要取决于铁锂本身就不密实,其次取决于其很小的中位粒度(使得材料的密度愈发的小),最次才是他的填充性能(但是这一点往往关系不太大,因为纳米磷酸铁锂一般粒度分布也是比较宽的,而就算分布再宽,填充的再实,也比不上微米级别的铁锂)
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!