2011-2012年高考数学 真题分类汇编 选修4系列(含解析)

上传人:lisu****2020 文档编号:150006698 上传时间:2022-09-08 格式:DOC 页数:23 大小:1.61MB
返回 下载 相关 举报
2011-2012年高考数学 真题分类汇编 选修4系列(含解析)_第1页
第1页 / 共23页
2011-2012年高考数学 真题分类汇编 选修4系列(含解析)_第2页
第2页 / 共23页
2011-2012年高考数学 真题分类汇编 选修4系列(含解析)_第3页
第3页 / 共23页
点击查看更多>>
资源描述
选修4系列1.(2012北京高考卷T55分) 如图. ACB=90,CDAB于点D,以BD为直径的圆与BC交于点E.则( )A. CECB=ADDB B. CECB=ADABC. ADAB=CD D.CEEB=CD 【答案】A【解析】在中,ACB=90,CDAB于点D,所以,由切割线定理的,所以CECB=ADDB。 2.(2012湖北高考卷T154分)(选修4-1:几何证明选讲)如图,点D在的弦AB上移动,连接OD,过点D 作的垂线交于点C,则CD的最大值为 . CBADO.第15题图【答案】2【解析】(由于因此,线段长为定值,即需求解线段长度的最小值,根据弦中点到圆心的距离最短,此时为的中点,点与点重合,因此.3.(2012湖南高考卷T94分) 在直角坐标系xOy 中,已知曲线: (t为参数)与曲线 :(为参数,) 有一个公共点在X轴上,则.【答案】【解析】曲线:直角坐标方程为,与轴交点为;曲线 :直角坐标方程为,其与轴交点为,由,曲线与曲线有一个公共点在X轴上,知.【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线与曲线的参数方程分别等价转化为直角坐标方程,找出与轴交点,即可求得.4.(2012新课标卷T2210分)选修4-1:几何证明选讲如图,分别为边的中点,直线交的外接圆于两点,若,证明:(1);(2)【答案】, (2) 5. (2012新课标卷T2310分) 选修44;坐标系与参数方程已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为(1)求点的直角坐标;(2)设为上任意一点,求的取值范围.【答案】(1)点的极坐标为 点的直角坐标为 (2)设;则 6. (2012新课标卷T2410分) 选修:不等式选讲已知函数(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.【答案】(1)当时, 或或 或 (2)原命题在上恒成立在上恒成立在上恒成立7.(2012陕西高考卷T154分) A.(不等式选做题)若存在实数使成立,则实数的取值范围是 .【答案】. 【解析】不等式可以表示数轴上的点到点和点1的距离之和小于等于3,因为数轴上的点到点和点1的距离之和最小时即是在点和点1之间时,此时距离和为,要使不等式有解,则,解得.8. (2012陕西高考卷T154分)(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,垂足为F,若,则 . 【答案】5. 【解析】.连接AD,则,, 又,即.9. (2012陕西高考卷T154分)(坐标系与参数方程)直线与圆相交的弦长为 .【答案】.【解析】直线与圆的普通方程为,圆心到直线的距离为,所以弦长为.10.(2012上海高考卷T34分)函数的值域是 。【答案】【解析】函数,因为,所以,即函数的值域为。11.(2012上海高考卷T104分)如图,在极坐标系中,过点的直线与极轴的夹角,若将的极坐标方程写成的形式,则 。【答案】【解析】设直线上的任一点为P,因为,所以,根据正弦定理得,即,即。12.(2012江西高考卷T154分) (坐标系与参数方程选做题)曲线C的直角坐标方程为x2y2-2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为_。【命题立意】本题考查参数方程,考查极坐标与平面直角坐标系之间的转化。【解析】因为,所以代入直角坐标方程整理得,所以,即极坐标方程为。【答案】13.(2012辽宁高考卷T2210分) 选修41:几何证明选讲 如图,O和相交于两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交O于点E。证明 (); () 。【答案】【点评】本题主要考查圆的基本性质,等弧所对的圆周角相等,同时结合三角形相似这一知识点考查本题属于选讲部分,涉及到圆的性质的运用,考查的主要思想方法为等量代换法,属于中低档题,难度较小,从这几年的选讲部分命题趋势看,考查圆的基本性质的题目居多,在练习时,要有所侧重14.(2012辽宁高考卷T2310分) 选修44:坐标系与参数方程 在直角坐标中,圆,圆。 ()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示); ()求出的公共弦的参数方程。【答案】【点评】本题主要考查直线的参数方程和圆的极坐标方程、普通方程与参数方程的互化、极坐标系的组成本题要注意圆的圆心为半径为,圆的圆心为半径为,从而写出它们的极坐标方程;对于两圆的公共弦,可以先求出其代数形式,然后化成参数形式,也可以直接根据直线的参数形式写出。对于极坐标和参数方程的考查,主要集中在常见曲线的考查上,题目以中低档题为主15. (2012辽宁高考卷T2410分)选修45:不等式选讲 已知,不等式的解集为。 ()求a的值; ()若恒成立,求k的取值范围。【答案】【点评】本题主要考查分段函数、不等式的基本性质、绝对值不等式及其运用,考查分类讨论思想在解题中的灵活运用,第()问,要真对的取值情况进行讨论,第()问要真对的正负进行讨论从而用分段函数表示,进而求出k的取值范围。本题属于中档题,难度适中平时复习中,要切实注意绝对值不等式的性质与其灵活运用。16.(2012江西高考卷T164分)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|6的解集为_。【答案】【命题立意】本题考查绝对值不等式的解法,以及分类讨论的数学思想。【解析】原不等式等价为,方法 (1)讨论:当时,不等式等价为,即,此时 ;当时,不等式等价为,即,恒成立,此时 ;当时,不等式等价为,即,此时 ,综上不等式的解为,所以不等式的解集为。方法(2)利用绝对值的几何意义,不等式的几何意义是数轴上的点到点的距离之和小于等于3的解。当或时有,所以的解为,所以不等式的解集为。17.(2012湖南高考卷T104分)不等式|2x+1|-2|x-1|0的解集为_.【答案】【解析】令,则由得的解集为.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).18.(2012湖南高考卷T114分)如下图所示,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于_.【答案】【解析】设交圆O于C,D,如图,设圆的半径为R,由割线定理知【点评】本题考查切割线定理,考查数形结合思想,由切割线定理知,从而求得圆的半径.19.(2012湖北高考卷T164分)(选修4-4:坐标系与参数方程)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系. 已知射线与曲线(t为参数),相交于A,B两点,则线段AB的中点的直角坐标为 .【答案】【解析】在直角坐标系下的一般方程为,将参数方程(t为参数)转化为直角坐标系下的一般方程为表示一条抛物线,联立上面两个方程消去有,设两点及其中点的横坐标分别为,则有韦达定理,又由于点点在直线上,因此的中点.20.(2012北京高考卷T94分) 直线为参数)与曲线为参数)的交点个数为_。【答案】2【解析】直线的普通方程,圆的普通方程为,可以直线圆相交,故有2个交点。21.(2012广东高考卷T94分)不等式|x+2|-|x|1的解集为_【答案】【解析】,当时,不成立;当时,得;当时,恒成立,故不等式的解集为22. (2012广东高考卷T154分)(几何证明选讲选做题)如图所示,圆O的半径为1,A、B、C是圆周上的三点,满足ABC=30,过点A做圆O的切线与OC的延长线交于点P,则PA=_【点评】本题考查几何证明选讲内容与余弦定理,意在考查学生的思维能力、运算求解能力【答案】【解析】法一:连接OA得AOP=,所以OP=2,PC=1,所以,所以。法二:延长PO交圆于点D,连接AD、OA,则,因为OA=OD,所以,又因为,所以,所以PA=AD,在中,由余弦定理得,故23.(2012安徽高考卷T13 4分)在极坐标系中,圆的圆心到直线的距离是【答案】【命题立意】本题考查极坐标中的点与直线的距离。【解析】圆的圆心,直线;点到直线的距离是24.(2012天津高考卷T124分)已知抛物线的参数方程为(t为参数),其中p0,焦点为F,准线为. 过抛物线上一点M作的垂线,垂足为E. 若|EF|=|MF|,点M的横坐标是3,则p = _.【答案】 2【解析】消去参数得抛物线方程为,准线方程为,因M为抛物线上一点,所以有,又,所以三角形为等边三角形,则,解得。25.(2012天津高考卷T134分)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D. 过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为_.【答案】【解析】如图连结BC,BE,则1=2,2=A,又B=B,,代入数值得BC=2,AC=4,又由平行线等分线段定理得,解得CD=.26.(2012江苏高考卷T2110分)选修4 - 1:几何证明选讲 (10分)如图,是圆的直径,为圆上位于异侧的两点,连结并延长至点,使,连结求证:【答案】证明:连接。 是圆的直径,(直径所对的圆周角是直角)。 (垂直的定义)。 又,是线段的中垂线(线段的中垂线定义)。 (线段中垂线上的点到线段两端的距离相等)。 (等腰三角形等边对等角的性质)。 又为圆上位于异侧的两点, (同弧所对圆周角相等)。 (等量代换)。【考点】圆周角定理,线段垂直平分线的判定和性质,等腰三角形的性质。【解析】要证,就得找一个中间量代换,一方面考虑到是同弧所对圆周角,相等;另一方面由是圆的直径和可知是线段的中垂线,从而根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到。从而得证。本题还可连接,利用三角形中位线来求证。27.(2012福建高考卷T217分)选修4-2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵对应的变换作用下得到的曲线为x2+y2=1.()求实数a,b的值.()求A2的逆矩阵.【答案】本题主要考查矩阵与变换等基础知识,考查基本运算能力,以及化归与转化思想. 28. (2012福建高考卷T227分)选修4-4:坐标系与参数方程 在平面直角坐标系中,以坐标原点O为几点,x轴的正半轴为极轴建立极坐标系。已知直线上两点M,N的极坐标分别为(2,0),圆C的参数方程。()设P为线段MN的中点,求直线OP的平面直角坐标方程;()判断直线与圆C的位置关系。【答案】29. (2012福建高考卷T237分)选修4-5:不等式选讲已知函数f(x)=m-|x-2|,mR,且f(x+2)0的解集为-1,1.()求m的值;()若a,b,cR,且【答案】本题主要考查绝对值不等式、柯西不等式等基础知识,考查基本运算能力,以及化归与转化思想.30.(2012江苏高考卷T2210分)选修4 - 2:矩阵与变换 (10分)已知矩阵的逆矩阵,求矩阵的特征值 【解】,。 ,。 矩阵的特征多项式为。 令,解得矩阵的特征值。【考点】矩阵的运算,矩阵的特征值。【解析】由矩阵的逆矩阵,根据定义可求出矩阵,从而求出矩阵的特征值。31. (2012江苏高考卷T2310分)选修4 - 4:坐标系与参数方程 (10分)在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程【解】 圆圆心为直线与极轴的交点,在中令,得。 圆的圆心坐标为(1,0)。 圆经过点,圆的半径为。 圆经过极点。圆的极坐标方程为。【考点】直线和圆的极坐标方程。【解析】根据圆圆心为直线与极轴的交点求出的圆心坐标;根据圆经过点求出圆的半径。从而得到圆的极坐标方程。32. (2012江苏高考卷T2410分)选修4 - 5:不等式选讲 (10分)已知实数x,y满足:求证:【考点】绝对值不等式的基本知识。【解析】根据绝对值不等式的性质求证。【证明】 , 由题设。 33.(2011年福建)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换设矩阵(其中a0,b0)(I)若a=2,b=3,求矩阵M的逆矩阵M-1;(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C:,求a,b的值(2)(本小题满分7分)选修4-4:坐标系与参数方程在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值(3)(本小题满分7分)选修4-5:不等式选讲设不等式的解集为M(I)求集合M;(II)若a,bM,试比较ab+1与a+b的大小(1)选修42:矩阵与变换 本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。解:(I)设矩阵M的逆矩阵,则又,所以,所以故所求的逆矩阵(II)设曲线C上任意一点,它在矩阵M所对应的线性变换作用下得到点,则又点在曲线上,所以,则为曲线C的方程,又已知曲线C的方程为又(2)选修44:坐标系与参数方程本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想。满分7分。解:(I)把极坐标系下的点化为直角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(II)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为,由此得,当时,d取得最小值,且最小值为(3)选修45:不等式选讲本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。解:(I)由所以(II)由(I)和,所以故34.(2011年辽宁)在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标 系中,射线l:=与C1,C2各有一个交点当=0时,这两个交点间的距离为2,当=时,这两个交点重合(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积解: (I)C1是圆,C2是椭圆. 当时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3. 当时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1. (II)C1,C2的普通方程分别为 当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为 当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为 35.(2011年辽宁)选修4-5:不等式选讲已知函数=|x-2|x-5|(I)证明:3;(II)求不等式x2x+15的解集解: (I)因为EC=ED,所以EDC=ECD.因为A,B,C,D四点在同一圆上,所以EDC=EBA.故ECD=EBA,所以CD/AB. (II)由(I)知,AE=BE,因为EF=FG,故EFD=EGC从而FED=GEC.连结AF,BG,则EFAEGB,故FAE=GBE,又CD/AB,EDC=ECD,所以FAB=GBA.所以AFG+GBA=180.故A,B,G,F四点共圆 解: (I) 当 所以 (II)由(I)可知, 当的解集为空集; 当; 当. 综上,不等式 10分36(2011年全国新课标)选修4-1:几何证明选讲如图,D,E分别为的边AB,AC上的点,且不与的顶点重合已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程的两个根(I)证明:C,B,D,E四点共圆;(II)若,且求C,B,D,E所在圆的半径解:(I)连接DE,根据题意在ADE和ACB中, ADAB=mn=AEAC, 即.又DAE=CAB,从而ADEACB 因此ADE=ACB 所以C,B,D,E四点共圆()m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故 AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A=900,故GHAB, HFAC. HF=AG=5,DF= (12-2)=5.故C,B,D,E四点所在圆的半径为537.(2011年全国新课标)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以 即 从而的参数方程为(为参数)()曲线的极坐标方程为,曲线的极坐标方程为射线与的交点的极径为,射线与的交点的极径为所以.38.(2011年全国新课标)选修4-5:不等式选讲设函数,其中(I)当a=1时,求不等式的解集(II)若不等式的解集为x|,求a的值解:()当时,可化为由此可得 或故不等式的解集为或() 由得 此不等式化为不等式组 或即 或因为,所以不等式组的解集为由题设可得= ,故
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!