资源描述
第2课时直线与椭圆,考点一中点弦及弦长问题多维探究 角度1中点弦问题,解(1)设弦的端点为P(x1,y1),Q(x2,y2),其中点是M(x,y),则x2x12x,y2y12y,由于点P,Q在椭圆上,则有:,规律方法弦及弦中点问题的解决方法 (1)根与系数的关系:直线与椭圆方程联立、消元,利用根与系数关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率.,角度2弦长问题,解(1)根据题意,设F1,F2的坐标分别为(c,0),(c,0),,解得a2,c1,则b2a2c23,,(2)假设存在斜率为1的直线l,设为yxm, 由(1)知F1,F2的坐标分别为(1,0),(1,0), 所以以线段F1F2为直径的圆为x2y21,,由题意得(8m)247(4m212)33648m248(7m2)0,解得m27,,解析(1)法一由题意知,椭圆的右焦点F1的坐标为(1,0),直线AB的方程为y2(x1),,法二由题意知,椭圆的右焦点F1的坐标为(1,0),直线AB的方程为y2(x1),,(2)法一椭圆的中心在原点,一个焦点为(0,2),,设直线y3x7与椭圆相交所得弦的端点分别为A(x1,y1),B(x2,y2),,法二椭圆的中心在原点,一个焦点为(0,2),,设直线y3x7与椭圆相交所得弦的端点分别为A(x1,y1),B(x2,y2),则,又弦AB的中点的纵坐标为1,故横坐标为2,,考点二最值与范围问题易错警示,解(1)由ABP是等腰直角三角形,得a2,B(2,0).,代入椭圆方程得b21,,(2)依题意得,直线l的斜率存在,方程设为ykx2.,因直线l与E有两个交点,即方程(*)有不等的两实根,,设M(x1,y1),N(x2,y2),,因坐标原点O位于以MN为直径的圆外,,又由x1x2y1y2x1x2(kx12)(kx22)(1k2)x1x22k(x1x2)4,规律方法最值与范围问题的解题思路 1.构造关于所求量的函数,通过求函数的值域来获得问题的解. 2.构造关于所求量的不等式,通过解不等式来获得问题的解.在解题过程中,一定要深刻挖掘题目中的隐含条件,如判别式大于零等. 易错警示(1)设直线方程时,应注意讨论斜率不存在的情况. (2)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.,答案A,思维升华 解决中点弦、弦长及最值与范围问题一般利用“设而不求”的思想,通过根与系数的关系构建方程求解参数、计算弦长、表达函数. 易错防范 1.涉及直线的斜率时,要考虑直线斜率不存在的情况是否符合题意. 2.求某几何量的最值或范围要考虑其中变量的取值范围.,数学运算高考解析几何问题中的“设而不求”,1.数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程,解析几何正是利用数学运算解决几何问题的一门科学. 2.“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代入等.,类型1巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求,类型2中点弦或对称问题,可以利用“点差法”,“点差法”实质上是“设而不求”的一种方法 【例2】 (1)ABC的三个顶点都在抛物线E:y22x上,其中A(2,2),ABC的重心G是抛物线E的焦点,则BC所在直线的方程为_. (2)抛物线E:y22x上存在两点关于直线yk(x2)对称,则k的取值范围是_.,(2)当k0时,显然成立.,类型3中点弦或对称问题,可以利用“点差法”,但不要忘记验证0,解假设存在直线l与双曲线交于A,B两点,且点P是线段AB的中点.,故直线l的方程为y12(x1),即y2x1.,因为162480,方程无解,故不存在一条直线l与双曲线交于A,B两点,且点P是线段AB的中点.,类型4求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,“替代法”的实质是设而不求 【例4】 (2017全国卷改编)已知F为抛物线C:y22x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|DE|的最小值为_.,设A(x1,y1),B(x2,y2),则y1y22t,y1y21.,答案8,
展开阅读全文