资源描述
2.5 线性系统的脉冲响应矩阵,2.5.1 线性时变系统的脉冲响应矩阵,假设系统初始条件为零, 输入为单位脉冲函数,即,就表示在 时刻,仅在第i个输入端施加一个单位脉冲。系统的输出为:,为m维向量,它表示系统输出 对输入 的第i个元素在时刻加入单位脉冲时的响应。,将 , 按次序排列,则,(44),2.5.2 线性定常系统的脉冲响应矩阵,脉冲响应矩阵为,(46),2.5.3 传递函数矩阵与脉冲响应矩阵之间的关系,对(47)式求拉普拉斯变换,L,而,(48),可见,线性定常系统在初始松弛情况下脉冲响应矩阵的拉普拉斯变换就是系统传递函数矩阵。,2.5.4 利用脉冲响应矩阵计算系统的输出,如果输入向量表示为,(53),2.6 线性连续系统方程的离散化,作以下假定: 1)被控对象上有采样开关; 2)采样周期为T,满足香农采样定理要求,包含连续信号全部信息; 3)具有零阶保持器。,2.6.1 线性时变系统,令 , ,则,(58),(58)减(60)并且整理后,得到,令:,考虑到,于是,2.6.2 线性定常系统,(63),离散化后得到,(64),其中,2.7 线性离散系统的运动分析,2.7.1 线性定常离散系统齐次状态方程的解,系统的齐次状态方程为:,其中,x(k)为n维状态向量,采用迭代法可以求出系统齐次状态方程的解,(65),2.7.2 状态转移矩阵,若系统初始状态为 ,通过 将其转移到状态 ,故 称为状态转移矩阵。,1. 的基本性质,1)满足自身的矩阵差分方程及初始条件,2)传递性,3)可逆性,2. 状态转移矩阵的计算,有4种状态转移矩阵的计算方法:按定义计算;用z反变换计算;应用凯-哈定理计算;通过线性变换计算。 在此,我们仅讨论用z反变换计算。,离散系统的齐次状态方程为:,对上式进行 z 变换,Z,例2-13 离散系统齐次状态方程为,求状态转移矩阵,解,Z,2.7.3 线性定常离散系统方程的解,(69),系统方程为,可以用迭代法求系统状态方程的解,2.7.3 线性时变离散系统方程的解,系统方程为,(72),(用迭代法可以证明),2.8 用MATLAB求解系统方程,2.8.1 线性齐次状态方程的解,使用MATLAB可以方便地求出状态方程的解。我们通过例子来说明。,程序执行结果,这表示,2.8.2 线性非齐次状态方程的解,通过以下例子说明。,例2-17 已知系统状态方程为,程序执行结果为,这表示,2.8.3 连续系统状态方程的离散化,在MATLAB中,函数c2d()的功能就是将连续时间的系统模型转换成离散时间的系统模型。其调用格式为:sysd=c2d(sysc,T,method)。其中,输入参量sysc为连续时间的系统模型;T为采样周期(秒);method用来指定离散化采用的方法 。,zoh采用零阶保持器; foh采用一阶保持器; tustin采用双线性逼近方法; prewarm采用改进的tustin方法;,matched采用SISO系统的零极点匹配方法; 当method为缺省时(即:调用格式为sysd=c2d(sysc,T)时),默认的方法是采用零阶保持器。,例2-18 某线性连续系统的状态方程为,语句执行的结果为,计算结果表示系统离散化后的状态方程为,第2 章 结束,
展开阅读全文