资源描述
专题升级训练28解答题专项训练(概率与统计)1(2012江西重点中学盟校联考,文17)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12345频率a0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率2(2012山东烟台一模,文20)调查某初中1 000名学生的肥胖情况,得下表:偏瘦正常肥胖女生(人)100173y男生(人)x177z已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?(3)已知y193,z193,求肥胖学生中男生不少于女生的概率3(2012河北邯郸一模,文18) PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物我国PM2.5标准采用世卫组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为一级;在3575微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶),若从这6天的数据中随机抽出2天(1)求恰有一天空气质量超标的概率;(2)求至多有一天空气质量超标的概率4为了解某居民小区住户的年收入和年饮食支出的关系,抽取了其中5户家庭的调查数据如下表:年收入x(万元)34567年饮食支出y(万元)11.31.522.2(1)根据表中数据用最小二乘法求得回归直线方程x中的0.31,请预测年收入为9万元家庭的年饮食支出;(2)从5户家庭中任选2户,求“恰有一户家庭年饮食支出小于1.6万元”的概率5(2012湖北武汉调研,文20)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2,(4.2,4.5,(5.1,5.4经过数据处理,得到如下频率分布表:分组频数频率(3.9,4.230.06(4.2,4.560.12(4.5,4.825x(4.8,5.1yz(5.1,5.420.04合计n1.00(1)求频率分布表中未知量n,x,y,z的值;(2)从样本中视力在(3.9,4.2和(5.1,5.4的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率6(2012北京朝阳模拟,文16)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组25,30),第2组30,35),第3组35,40),第4组40,45),第5组45,50,得到的频率分布直方图如图所示(1)下表是年龄的频数分布表,求正整数a,b的值;区间25,30)30,35)35,40)40,45)45,50人数5050a150b(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率7(2012广东汕头质检,文17)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组13,14),第二组14,15),第五组17,18,下图是按上述分组方法得到的频率分布直方图(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n13,14)17,18,求事件“|mn|1”的概率参考答案1解:(1)由频率分布表得a0.20.45bc1,即abc0.35因为抽取的20件日用品中,等级系数为4的恰有3件,所以b0.15等级系数为5的恰有2件,所以c0.1从而a0.35bc0.1所以a0.1,b0.15,c0.1(2)从日用品x1,x2,x3,y1,y2中任取2件,所有可能的结果为x1,x2,x1,x3,x1,y1,x1,y2,x2,x3,x2,y1,x2,y2,x3,y1,x3,y2,y1,y2设事件A表示“从日用品x1,x2,x3,y1,y2中任取2件,其等级系数相等”,则A包含的基本事件为x1,x2,x1,x3,x2,x3,y1,y2,共4个又基本事件的总数为10,故所求的概率P(A)0.42解:(1)由题意可知,0.15,所以x150(人)(2)由题意可知,肥胖学生人数为yz400(人)设应在肥胖学生中抽取m人,则,所以m20(人),所以应在肥胖学生中抽20名(3)由题意可知,yz400,且y193,z193,满足条件的(y,z)有(193,207),(194,206),(207,193),共有15组设事件A为“肥胖学生中男生不少于女生”,即yz,满足条件的(y,z)有(193,207),(194,206),(200,200),共有8组,所以P(A)即肥胖学生中女生少于男生的概率为3解:由茎叶图知:6天有4天空气质量未超标,有2天空气质量超标记未超标的4天为a,b,c,d,超标的两天为e,f则从6天中抽取2天的所有情况为:ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef,基本事件数为15(1)记“6天中抽取2天,恰有1天空气质量超标”为事件A,可能结果为:ae,af,be,bf,ce,cf,de,df,基本事件数为8P(A);(2)记“至多有一天空气质量超标”为事件B,“2天都超标”为事件C,其可能结果为ef,故P(C),P(B)1P(C)14解:(1)5,1.6,又0.31,代入,解得0.05,0.31x0.05,当x9时,解得2.84(万元)年收入为9万元家庭的年饮食支出约为2.84万元(2)记“年饮食支出小于1.6万元”的家庭为a,b,c;“年饮食支出不小于1.6万元”的家庭为M,N设“从5户家庭中任选2户,恰有一户家庭年饮食支出小于1.6万元”为事件A所有基本事件为(a,b),(a,c),(a,M),(a,N),(b,c),(b,M),(b,N),(c,M),(c,N),(M,N),共10个基本事件事件A包含的基本事件有(a,M),(a,N),(b,M),(b,N),(c,M),(c,N),共6个,P(A)0.6答:从5户家庭中任选2户恰有一户家庭年饮食支出小于1.6万元的概率是0.65解:(1)由频率分布表可知,样本容量为n,由0.04,得n50x0.5,y503625214,z0.28(2)记样本中视力在(3.9,4.2的3人为a,b,c,在(5.1,5.4的2人为d,e由题意,从5人中随机抽取两人,所有可能的结果有:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),共10种设事件A表示“两人的视力差的绝对值低于0.5”,则事件A包含的可能的结果有:(a,b),(a,c),(b,c),(d,e),共4种P(A)故两人的视力差的绝对值低于0.5的概率为6解:(1)由题设可知,a0.085500200,b0.02550050(2)因为第1,2,3组共有5050200300人,利用分层抽样在300名员工中抽取6名,每组抽取的人数分别为:第1组的人数为61,第2组的人数为61,第3组的人数为64,所以第1,2,3组分别抽取1人,1人,4人(3)设第1组的1位员工为A,第2组的1位员工为B,第3组的4位员工为C1,C2,C3,C4,则从六位员工中抽两位员工有:(A,B),(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),(B,C2),(B,C3),(B,C4),(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4),共15种可能其中2人年龄都不在第3组的有:(A,B),共1种可能,所以至少有1人年龄在第3组的概率为17解:(1)由频率分布直方图知,成绩在14,15)内的人数为:500.2010(人),成绩在15,16)内的人数为:500.3819(人)所以成绩在14,16)内的人数为29人,所以该班成绩良好的人数为29人(2)由频率分布直方图知,成绩在13,14)的人数为500.063人,且记为x,y,z;成绩在17,18的人数为500.042人,且记为A,B若m,n13,14)时,有xy,xz,yz共3种情况;若m,n17,18时,有AB共1种情况;若m,n分别在13,14)和17,18内时,有xA,xB,yA,yB,zA,zB,共6种情况,所以,基本事件总数为10种事件“|mn|1”记为M,则事件M包含的基本事件个数有6种:xA,xB,yA,yB,zA,zB,所以P(M),所以事件“|mn|1”的概率为
展开阅读全文