资源描述
江苏省淮安市淮阴区棉花中学中考数学 分式复习学案 新人教版学案设计:学习过程:一、知识结构与知识点:1分式的约分2分式的通分3分式的乘除4分式的混合运算5零指数,负整数,整数,整数指数幂的运算a)零指数 b)负整数指数 c)注意正整数幂的运算性质 可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数二、例题讲解:(一) 分式的约分与通分1约分: 2通分注意点:什么是分式的约分与通分?其关键是什么?它们的理论依据是什么?(二)分式的乘除化简 (三)分式的加减(1)+ (2)(四)分式的混合运算(1) (2)(a-(3) (五)求代数式的值1.化简并求值:. +(2),其中x=cos30,y=sin902. 先化简后再求值:+,其中x= +1三、小结:四、教学反思:五、同步训练:1已知是恒等式,则A,B。2(1) = (2)= 3. 已知2,求的值4.化简(1)1+ (2) (3) a+(a-) (a-2)(a+1)(4)已知b(b1)a(2ba)=b+6,求ab的值 (5)(1+ )(x4+ )3 (1) (6)已知x+=,求 的值(7)若1,求证: 5.若(1)a=1,求 +1的值6.已知 x25xy+6y2=0 求 的值7当a=时,求分式( +1) 的值8已知m25m+1=o 求(1) m3+ (2)m的值9.当x=1998,y=1999时, 求分式 的值 10已知=,求 的值 11.已知:,求12.先化简,再求值:(其中x=tan60-313.已知:x=,求x3-2x2+3x-5.14 ,其中m=,n=15.已知x2-3x+1=0,求(1)x3-2x2-2x+8; (2); (3).16.已知3a2+ab-2b2=0, 求的值.17先化简,再求值:,其中x是方程x2-4x+1=0的根.
展开阅读全文