资源描述
球的表面积和体积,问题提出,1.柱体、锥体、台体的体积公式分别是什么?圆柱、圆锥、圆台的表面积公式分别是什么?,2.球是一个旋转体,它也有表面积和体积,怎样求一个球的表面积和体积也就成为我们学习的内容.,知识探究(一):球的体积,思考1:从球的结构特征分析,球的大小由哪个量所确定?,思考2:底面半径和高都为R的圆柱和圆锥的体积分别是什么?,思考3:如图,对一个半径为R的半球,其体积与上述圆柱和圆锥的体积有何大小关系?,思考4:根据上述圆柱、圆锥的体积,你猜想半球的体积是什么?,思考5:由上述猜想可知,半径为R的球的 体积 ,这是一个正确的结论,你 能提出一些证明思路吗?,知识探究(二):球的表面积,思考1:半径为r的圆面积公式是什么?它是怎样得出来的?,思考2:把球面任意分割成n个“小球面片”,它们的面积之和等于什么?,思考3:以这些“小球面片”为底,球心为顶点的“小锥体”近似地看成棱锥,那么这些小棱锥的底面积和高近似地等于什么?它们的体积之和近似地等于什么?,思考4:你能由此推导出半径为R的球的表面积公式吗?,思考5:经过球心的截面圆面积是什么?它与球的表面积有什么关系?,球的表面积等于球的大圆面积的4倍,理论迁移,例1 如图,圆柱的底面直径与高都等于球的直径,求证: (1)球的体积等于圆柱体积的 ; (2)球的表面积等于圆柱的侧面积.,例2 已知正方体的八个顶点都在球O的球面上,且正方体的表面积为a2,求球O的表面积和体积.,例3 有一种空心钢球,质量为142g(钢的密度为7.9g/cm3),测得其外径为5cm,求它的内径(精确到0.1cm).,例4 已知A、B、C为球面上三点,AC=BC=6,AB=4,球心O与ABC的外心M的距离等于球半径的一半,求这个球的表面积和体积.,
展开阅读全文