计量经济学2.1单方程计量经济学模型经典单方程计量经济学模型.ppt

上传人:za****8 文档编号:14522941 上传时间:2020-07-22 格式:PPT 页数:21 大小:285.06KB
返回 下载 相关 举报
计量经济学2.1单方程计量经济学模型经典单方程计量经济学模型.ppt_第1页
第1页 / 共21页
计量经济学2.1单方程计量经济学模型经典单方程计量经济学模型.ppt_第2页
第2页 / 共21页
计量经济学2.1单方程计量经济学模型经典单方程计量经济学模型.ppt_第3页
第3页 / 共21页
点击查看更多>>
资源描述
单方程计量经济学模型理论与方法,Theory and Methodology of Single-Equation Econometric Model,第二章 经典单方程计量经济学模型:一元线性回归模型,回归分析概述 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例,2.1 回归分析概述,一、变量间的关系及回归分析的基本概念,二、总体回归函数,三、随机扰动项,四、样本回归函数(SRF),2.1 回归分析概述,(1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。 (2)统计依赖或相关关系:研究的是非确定现象随机变量间的关系。,一、变量间的关系及回归分析的基本概念,1、变量间的关系 经济变量之间的关系,大体可分为两类:,对变量间统计依赖关系的考察主要是通过相关分析(correlation analysis)或回归分析(regression analysis)来完成的:,例如: 函数关系:,统计依赖关系/统计相关关系:,不线性相关并不意味着不相关; 有相关关系并不意味着一定有因果关系; 回归分析/相关分析研究一个变量对另一个(些)变量的统计依赖关系,但它们并不意味着一定有因果关系。 相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的。回归分析对变量的处理方法存在不对称性,即区分应变量(被解释变量)和自变量(解释变量):前者是随机变量,后者不是。,注意:,回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。 其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。 这里:前一个变量被称为被解释变量(Explained Variable)或因变量(Dependent Variable),后一个(些)变量被称为解释变量(Explanatory Variable)或自变量(Independent Variable)。,2、回归分析的基本概念,回归分析构成计量经济学的方法论基础,其主要内容包括: (1)根据样本观察值对经济计量模型参数进行估计,求得回归方程; (2)对回归方程、参数估计值进行显著性检验; (3)利用回归方程进行分析、评价及预测。,由于变量间关系的随机性,回归分析关心的是根据解释变量的已知或给定值,考察被解释变量的总体均值,即当解释变量取某个确定值时,与之统计相关的被解释变量所有可能出现的对应值的平均值。,例2.1:一个假想的社区有100户家庭组成,要研究该社区每月家庭消费支出Y与每月家庭可支配收入X的关系。 即如果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水平。,二、总体回归函数,为达到此目的,将该100户家庭划分为组内收入差不多的10组,以分析每一收入组的家庭消费支出。,(1)由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同; (2)但由于调查的完备性,给定收入水平X的消费支出Y的分布是确定的,即以X的给定值为条件的Y的条件分布(Conditional distribution)是已知的, 如: P(Y=561|X=800)=1/4。,因此,给定收入X的值Xi,可得消费支出Y的条件均值(conditional mean)或条件期望(conditional expectation): E(Y|X=Xi),该例中:E(Y | X=800)=605,分析:,描出散点图发现:随着收入的增加,消费“平均地说”也在增加,且Y的条件均值均落在一根正斜率的直线上。这条直线称为总体回归线。,概念:,在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线(population regression curve)。,称为(双变量)总体回归函数(population regression function, PRF)。,相应的函数:,回归函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。,含义:,函数形式: 可以是线性或非线性的。,例2.1中,将居民消费支出看成是其可支配收入的线性函数时:,为一线性函数。其中,0,1是未知参数,称为回归系数(regression coefficients)。 。,三、随机扰动项,总体回归函数说明在给定的收入水平Xi下,该社区家庭平均的消费支出水平。 但对某一个别的家庭,其消费支出可能与该平均水平有偏差。,称i为观察值Yi围绕它的期望值E(Y|Xi)的离差(deviation),是一个不可观测的随机变量,又称为随机干扰项(stochastic disturbance)或随机误差项(stochastic error)。,记,例2.1中,个别家庭的消费支出为:,(*)式称为总体回归函数(方程)PRF的随机设定形式。表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。,(1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为系统性(systematic)或确定性(deterministic)部分。 (2)其他随机或非确定性(nonsystematic)部分i。,即,给定收入水平Xi ,个别家庭的支出可表示为两部分之和:,(*),由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型。,随机误差项主要包括下列因素的影响:,1)在解释变量中被忽略的因素的影响; 2)变量观测值的观测误差的影响; 3)模型关系的设定误差的影响; 4)其它随机因素的影响。,产生并设计随机误差项的主要原因: 1)理论的含糊性; 2)数据的欠缺; 3)节省原则。,四、样本回归函数(SRF),问题:能从一次抽样中获得总体的近似的信息吗?如果可以,如何从抽样中获得总体的近似信息?,问:能否从该样本估计总体回归函数PRF?,回答:能,例2.2:在例2.1的总体中有如下一个样本,,总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一个样本。,该样本的散点图(scatter diagram):,样本散点图近似于一条直线,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。该线称为样本回归线(sample regression lines)。,记样本回归线的函数形式为:,称为样本回归函数(sample regression function,SRF)。,这里将样本回归线看成总体回归线的近似替代,则,注意:,样本回归函数的随机形式/样本回归模型:,同样地,样本回归函数也有如下的随机形式:,由于方程中引入了随机项,成为计量经济模型,因此也称为样本回归模型(sample regression model)。,回归分析的主要目的:根据样本回归函数SRF,估计总体回归函数PRF。,注意:这里PRF可能永远无法知道。,即,根据,估计,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!