专题三 一元一次方程及其应用

上传人:二*** 文档编号:143951149 上传时间:2022-08-26 格式:DOC 页数:29 大小:822.83KB
返回 下载 相关 举报
专题三 一元一次方程及其应用_第1页
第1页 / 共29页
专题三 一元一次方程及其应用_第2页
第2页 / 共29页
专题三 一元一次方程及其应用_第3页
第3页 / 共29页
点击查看更多>>
资源描述
一元一次方程及其应用一.选择题(2015江苏无锡,第4题2分)方程2x1=3x+2的解为()Ax=1Bx=1Cx=3Dx=3考点:解一元一次方程分析:方程移项合并,把x系数化为1,即可求解解答:解:方程2x1=3x+2,移项得:2x3x=2+1,合并得:x=3解得:x=3,故选D点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求解2. (2015四川南充,第4题3分)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )(A)25台 (B)50台 (C)75台 (D)100台【答案】C考点:一元一次方程的应用.3. (2015浙江杭州,第7题3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程( )A. 54x=20%108B. 54x=20%(108+x)C. 54+x=20%162D. 108x=20%(54+x)【答案】B.【考点】由实际问题列方程.【分析】根据题意,旱地改为林地后,旱地面积为公顷,林地面积为公顷,等量关系为“旱地占林地面积的20%”,即. 故选B.4(2015北京市,第9题,3分)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类5025B类20020C类40015例如,购买A类会员卡,一年内游泳20次,消费50+2520=550元,若一年内在该游泳馆游泳的次数介于4555次之间,则最省钱的方式为A购买A类会员年卡 B购买B类会员年卡C购买C类会员年卡 D不购买会员年卡【考点】一元一次方程【难度】中等【答案】C【点评】本题考查一元一次方程的基本概念。5(2015深圳,第10题 分)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。A、 B、 C、 D、【答案】B.【解析】设进价为x元,则200X0.8x40,解得:x120,选B。二.填空题1(2015湖北省孝感市,第14题3分)某市为提倡节约用水,采取分段收费若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元小明家5月份交水费64元,则他家该月用水 m3考点:一元一次方程的应用.分析:20立方米时交40元,题中已知五月份交水费64元,即已经超过20立方米,所以在64元水费中有两部分构成,列方程即可解答解答:解:设该用户居民五月份实际用水x立方米,故202+(x20)3=64,故x=28故答案是:28点评:本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解2.(2015四川甘孜、阿坝,第22题4分)已知关于x的方程3ax=+3的解为2,则代数式a22a+1的值是1考点:一元一次方程的解.分析:先把x=2代入方程求出a的值,再把a的值代入代数式进行计算即可解答:解:关于x的方程3ax=+3的解为2,3a2=+3,解得a=2,原式=44+1=1故答案为:1点评:本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键3. (2015浙江省绍兴市,第16题,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示。若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm考点:一元一次方程的应用.专题:分类讨论分析:由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:当乙的水位低于甲的水位时,当甲的水位低于乙的水位时,甲的水位不变时,当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可解答:解:甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:当乙的水位低于甲的水位时,有1t=0.5,解得:t=分钟;当甲的水位低于乙的水位时,甲的水位不变时,t1=0.5,解得:t=,=65,此时丙容器已向甲容器溢水,5=分钟,=,即经过分钟边容器的水到达管子底部,乙的水位上升,解得:t=;当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,乙的水位到达管子底部的时间为;分钟,512(t)=0.5,解得:t=,综上所述开始注入,分钟的水量后,甲与乙的水位高度之差是0.5cm点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4. (2015浙江嘉兴,第15题5分)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为_. 考点:一元一次方程的应用.专题:数字问题分析:设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值解答:解:设“它”为x,根据题意得:x+x=19,解得:x=,则“它”的值为,故答案为:点评:此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键5. (2015浙江丽水,第14题4分)解一元二次方程错误!不能通过编辑域代码创建对象。时,可转化为两个一元一次方程,请写出其中的一个一元一次方程 .【答案】(答案不唯一).【考点】开放型;解一元二次方程. 【分析】由得, 或.三.解答题1. (2015浙江宁波,第22题10分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【答案】解:(1)设B种花木的数量是棵,则A种花木的数量是棵.根据题意,得,解得.答: A种花木的数量是4200棵,B种花木的数量是2400棵.(2)设安排人种植A种花木,则安排人种植B种花木.根据题意,得,解得.经检验,是原方程的根,且符合题意.答:安排14人种植A种花木,安排12人种植B种花木,才能确保同时完成各自的任务.【考点】一元一次方程和分式方程的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设B种花木的数量是棵,则A种花木的数量是棵,等量关系为:“广场内种植A、B两种花木共6600棵”.(2)方程的应用解题关键是找出等量关系,列出方程求解. 本题设安排人种植A种花木,则安排人种植B种花木,等量关系为:“每人每天能种植A花木60棵或B花木40棵”2. (2015四川乐山,第22题10分)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元考点:1一次函数的应用;2一元一次方程的应用;3一元一次不等式的应用3.(2015江苏泰州,第21题10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件, 并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【答案】每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标【解析】试题分析:设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可试题解析:设每件衬衫降价x元,依题意有 120400+(120x)100=80500(1+45%), 解得x=20 答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标考点:一元一次方程的应用4(2015广东广州,第17题9分)解方程:5x=3(x4) 考点:解一元一次方程专题:计算题分析:方程去括号,移项合并,把x系数化为1,即可求出解解答:解:方程去括号得:5x=3x12,移项合并得:2x=12,解得:x=6点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键二元一次方程(组)及其应用一.选择题1.(2015山东莱芜,第10题3分) 已知是二元一次方程组的解,则的算术平方根为( )A4B2CD 2【答案】B考点:二元一次方程组,算术平方根2.(2015淄博第5题,4分)已知是二元一次方程组的解,则2mn的平方根为()A2BCD2考点:二元一次方程组的解;平方根.分析:由x=2,y=1是二元一次方程组的解,将x=2,y=1代入方程组求出m与n的值,进而求出2mn的值,利用平方根的定义即可求出2mn的平方根解答:解:将代入中,得:,解得:2mn=62=4,则2mn的平方根为2故选:A点评:此题考查了二元一次方程组的解,以及平方根的定义,解二元一次方程组的方法有两种:加减消元法;代入消元法3(2015广东广州,第7题3分)已知a,b满足方程组,则a+b的值为( )A4B4C2D2考点:解二元一次方程组专题:计算题分析:求出方程组的解得到a与b的值,即可确定出a+b的值解答:解:,+5得:16a=32,即a=2,把a=2代入得:b=2,则a+b=4,故选B点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法4. (2015四川南充,第15题3分)已知关于x,y的二元一次方程组的解互为相反数,则k的值是【答案】1考点:二元一次方程.5. (2015浙江滨州,第18题4分) 某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.【答案】120【解析】试题分析:根据题意可设x缝制衣袖,y人缝制衣身,z人缝制衣领,则x+y+z=210,解由它们构成的方程组可求得x=120人.考点:三元一次方程组的应用6.(2015绵阳第3题,3分)若+|2ab+1|=0,则(ba)2015=()A1B1C52015D52015考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题分析:利用非负数的性质列出方程组,求出方程组的解得到a与b的值,即可确定出原式的值解答:解:+|2ab+1|=0,解得:,则(ba)2015=(3+2)2015=1故选:A点评:此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键7. (2015四川省内江市,第9题,3分)植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵设男生有x人,女生有y人,根据题意,下列方程组正确的是()ABCD考点:由实际问题抽象出二元一次方程组.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可解答:解:设男生有x人,女生有y人,根据题意可得:,故选D点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键二.填空题1.(2015福建泉州第15题4分)方程组的解是解:,+得:3x=3,即x=1,把x=1代入得:y=3,则方程组的解为,故答案为:2(2015北京市,第13题,3分)九章算术是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。它的代数成就主要包括开放术、正负术和方程术。其中,方程术是九章算术最高的数学成就。九章算术中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两。问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。问每头牛、每只羊各值金多少两”设每头牛值金x,每只羊各值金y两,可列方程组为_【考点】二元一次方程【难度】容易【答案】【点评】本题考查二元一次方程的基本概念。3. (2015四川凉山州,第14题4分)已知函数是正比例函数,则a= ,b= 【答案】;【解析】试题分析:根据题意可得:,解得:,故答案为:;考点:1正比例函数的定义;2解二元一次方程组三.解答题1. (2015呼和浩特,20,6分)(6分)若关于x、y的二元一次方程组的解满足x + y ,求出满足条件的m的所有正整数值.考点分析:二元一次方程组 不等式 整体思想 仔细观察解析:本题目不难,但还是囊括两个考点,另外还考了一个整体代换思想,如果没有看出,直接求出x、y也可以算出这个不等式的解,但工作量要大不少,只要细心也能拿到全分。解:+得:3(x+y)=3m+6,继续化简为x+y=m+2x+y ,m+2m m为正整数,m=1、2或32(2015广东省,第22题,7分)某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【答案】解:(1)设A,B型号的计算器的销售价格分别是x元,y元,得:,解得.答:A,B两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A型号的计算a台,得,解得.答:最少需要购进A型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A,B型号的计算器的销售价格分别是x元,y元,等量关系为:“销售5台A型号和1台B型号计算器的利润76元”和“销售6台A型号和3台B型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A型号的计算a台,不等量关系为:“购进A,B两种型号计算器共70台的资金不多于2500元”.3(2015山东日照 ,第17题9分)(1)先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值考点:分式的化简求值;二元一次方程组的解.分析:(1)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可;(2)先把m当作已知条件求出x、y的值,再根据足x+y=0求出m的值即可解答:解:(1)原式=a1,当a=时,原式=1;(2)解关于x,y的二元一次方程组得,x+y=0,2m11+7m=0,解得m=4点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键4(2015山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元(注:毛利润=售价进价)考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+602a11000,解得a50,150+50=200(元)答:每台A型号家用净水器的售价至少是200元点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键5.(2015江苏徐州,第24题8分)某超市为促销,决定对A,B两种商品进行打折出售打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?考点:二元一次方程组的应用.分析:设打折前A商品的单价为x元,B商品的单价为y元,根据买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元列出方程组,求出x、y的值,然后再计算出买50件A商品和40件B商品共需要的钱数即可解答:解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则508+402=480(元),答:打折前需要的钱数是480元点评:本题考查了利用二元一次方程组解决现实生活中的问题解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解6.(2015山东东营,第19题7分) (第题3分,第题4分) (1)计算:(2)解方程组: 【答案】:(1)0;(2) 考点:1。实数的运算;2。解二元一次方程组。7.(2015山东聊城,第18题7分)解方程组考点:解二元一次方程组.专题:计算题分析:方程组利用加减消元法求出解即可解答:解:,+得:3x=9,即x=3,把x=3代入得:y=2,则方程组的解为点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法8. (2015四川凉山州,第22题8分)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?【答案】(1)1.6,1.4;(2)有三种租车方案,租5辆大车和5辆小车时,租车费用最低,最低费用是8500元租5辆大车和5辆小车时,租车费用为:10005+7005=5000+3500=8500(元)租6辆大车和4辆小车时,租车费用为:10006+7004=6000+2800=8800(元)租7辆大车和3辆小车时,租车费用为:10007+7003=7000+2100=9100(元)850088009100,租5辆大车和5辆小车时,租车费用最低,最低费用是8500元考点:1一元一次不等式组的应用;2二元一次方程组的应用9. (2015四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。两次共花费940元(两次购进的A、B两种花草价格均分别相同)。(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用。考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题分析:(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据第一次分别购进A、B两种花草30棵和15棵,共花费940元;第二次分别购进A、B两种花草12棵和5棵,两次共花费675元;列出方程组,即可解答(2)设A种花草的数量为m株,则B种花草的数量为(31m)株,根据B种花草的数量少于A种花草的数量的2倍,得出m的范围,设总费用为W元,根据总费用=两种花草的费用之和建立函数关系式,由一次函数的性质就可以求出结论解答:解:(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据题意得:,解得:,A种花草每棵的价格是20元,B种花草每棵的价格是5元(2)设A种花草的数量为m株,则B种花草的数量为(31m)株,B种花草的数量少于A种花草的数量的2倍,31m2m,解得:m,m是正整数,m最小值=11,设购买树苗总费用为W=20m+5(31m)=15m+155,k0,W随x的减小而减小,当m=11时,W最小值=1511+155=320(元)答:购进A种花草的数量为11株、B种20株,费用最省;最省费用是320元点评:本题考查了列二元一次方程组,一元一次不等式解实际问题的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时根据总费用=两种花草的费用之和建立函数关系式是关键10. (2015四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解(2)设购买钢笔的数量为x,则笔记本的数量为80x,根据总费用不超过1100元,列出不等式解答即可解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80x,由题意得16x+10(80x)1100解得:x50答:工会最多可以购买50支钢笔点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式11. (2015浙江省绍兴市,第12题,12分)(本题12分)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛。如图3,在草坪RPCQ中,已知REPQ于点E,CFPQ于点F,求花坛RECF的面积。考点:二元一次方程组的应用;勾股定理的应用.分析:(1)利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD为18m,宽AB为13m得出等式求出即可;(2)根据题意得出纵向通道的宽为2m,横向通道的宽为1m,进而得出PQ,RE的长,即可得出PE、EF的长,进而求出花坛RECF的面积解答:解:(1)设通道的宽为xm,AM=8ym,AM:AN=8:9,AN=9y,解得:答:通道的宽是1m;(2)四块相同草坪中的每一块,有一条边长为8m,若RP=8,则AB13,不合题意,RQ=8,纵向通道的宽为2m,横向通道的宽为1m,RP=6,REPQ,四边形RPCQ是长方形,PQ=10,REPQ=PRQR=68,RE=4.8,RP2=RE2+PE2,PE=3.6,同理可得:QF=3.6,EF=2.8,S四边形RECF=4.82.8=13.44,即花坛RECF的面积为13.44m2,点评:此题主要考查了二元一次方程组的应用即四边形面积求法和三角形面积求法等知识,得出RP的长是解题关键12、(2015四川自贡,第22题12分)观察下表: 我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为.回答下列问题:. 第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第格的“特征多项式”为 ;.若第1格的“特征多项式”的值为 10,第2格的“特征多项式”的值为 16.求的值;.在此条件下,第的特征是否有最小值?若有,求出最小值和相应的值.若没有,请说明理由.考点:找规律列多项式、解二元一次方程组、二次函数的性质、配方求值等.分析:. 本问主要是抓住的排列规律;在第格是按排,每排是个来排列的;在第格是按排,每排是个来排列的;根据这个规律第问可获得解决.按排列规律得出“特征多项式”以及提供的相应的值,联立成二元一次方程组来解,可求出的值. .求最小值可以通过建立一个二次函数来解决;前面我们写出了第格的“特征多项式”和求出了的值,所以可以建立最小值关于的二次函数,根据二次函数的性质最小值便可求得.略解:. 第3格的“特征多项式”为 ,第4格的“特征多项式”为,第格的“特征多项式”为(为正整数);.依题意: 解之得: .设最小值为,依题意得: 坚持就是胜利! 答:有最小值为,相应的的值为12. 13. (2015浙江滨州,第20题9分)根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):1 . 2 . 3 .(2)以上每个方程组的解中,x值与y值的大小关系为 .(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【答案】(1) (2)x=y【解析】试题分析:(1)快速利用代入消元法或加减消元法求解;(2)根据(1)发现特点是x=y;(3)类比写出符合x=y的方程组,直接写出解即可.试题解析:解:(1)1 2 3 (2)x=y. (3)酌情判分,其中写出正确的方程组与解各占1分.考点:消元法解二元一次方程组,规律探索14(2015广东佛山,第22题8分)某景点的门票价格如表:购票人数/人15051100100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?考点:一元一次方程的应用 分析:(1)设七年级(1)班有x人、七年级(2)班有y人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;(2)用一张票节省的费用该班人数即可求解解答:解:(1)设七年级(1)班有x人、七年级(2)班有y人,由题意,得,解得:答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(128)49=196元,七年级(2)班节省的费用为:(1210)53=106元点评:本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键15.(2015湖北荆州第19题7分)解方程组:考点:解二元一次方程组专题:计算题分析:方程组利用加减消元法求出解即可解答:解:3得:11y=22,即y=2,把y=2代入得:x=1,则方程组的解为点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法16.(2015湖南邵阳第19题8分)解方程组:考点:解二元一次方程组.专题:计算题分析:方程组利用加减消元法求出解即可解答:解:,+得:3x=3,即x=1,把x=1代入得:y=2,则方程组的解为点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法17(2015湖南省益阳市,第19题12分)大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?考点:一元一次不等式的应用;二元一次方程组的应用分析:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据“当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨”列出方程组解决问题;(2)最多再生产x天后必须补充原材料,根据若剩余原材料数量小于或等于3吨列出不等式解决问题解答:解:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据题意得:解得答:初期购得原材料45吨,每天所耗费的原材料为1.5吨(2)设再生产x天后必须补充原材料,依题意得:45161515(1+20%)x3,解得:x10答:最多再生产10天后必须补充原材料点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键18(2015湖北省孝感市,第21题9分)某服装公司招工广告承诺:熟练工人每月工资至少3000元每天工作8小时,一个月工作25天月工资底薪800元,另加计件工资加工1件型服装计酬16元,加工1件型服装计酬12元在工作中发现一名熟练工加工1件型服装和2件型服装需4小时,加工3件型服装和1件型服装需7小时(工人月工资底薪计件工资)(1)一名熟练工加工1件型服装和1件型服装各需要多少小时?(4分)(2)一段时间后,公司规定:“每名工人每月必须加工,两种型号的服装,且加工型服装数量不少于型服装的一半”设一名熟练工人每月加工型服装件,工资总额为元请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?(5分)考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时”,列出方程组,即可解答(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(2582a)件从而得到W=8a+3200,再根据“加工A型服装数量不少于B型服装的一半”,得到a50,利用一次函数的性质,即可解答解答:解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时由题意得:,解得:(3分)答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时 (2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(2582a)件W=16a+12(2582a)+800,W=8a+3200,又a,解得:a50,80,W随着a的增大则减小,当a=50时,W有最大值280028003000,该服装公司执行规定后违背了广告承诺点评:本题考查了一次函数的应用,解决本题的关键是关键题意列出方程组和一次函数解析式,利用一次函数的性质解决实际问题19、(2015湖南省常德市,第22题7分)某物流公 司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元。(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【解答与分析】二次一次方程组的应用及不等式、一次函数的应用(1)解:设A种货物运输了吨,设A种货物运输了吨,依题意得: 解之得:(2)设A种货物为吨,则B种货物为吨,设获得的利润为W元依题意得:由得由可知W随着的增大而增大故W取最大值时=220即W=19800元
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!