资源描述
题型练5大题专项(三)统计与概率问题1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.2.(2018北京,理17)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型电影部数好评率第一类1400.4第二类500.2第三类3000.15第四类2000.25第五类8000.2第六类5100.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“k=1”表示第k类电影得到人们喜欢,用“k=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D(1),D(2),D(3),D(4),D(5),D(6)的大小关系.13.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数概率00.3010.1520.2030.2040.1050.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.4.(2018天津,理16)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.25.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.36.某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的质量(单位:g),整理后得到如下的频率分布直方图(其中质量的分组区间分别为(490,495,(495,500,(500,505,(505,510,(510,515).(1)若从这40件产品中任取两件,设X为质量超过505g的产品数量,求随机变量X的分布列;(2)若将该样本分布近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的质量超过505g的概率.4题型练5大题专项(三)统计与概率问题1.解(1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=(k=1,2,3,4).所以,随机变量X的分布列为XP1234随机变量X的数学期望E(X)=1+2+3+42.解(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A,第四类电影中获得好评的电影为2000.25=50(部).P(A)=0.025.(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B,P(B)=0.250.8+0.750.2=0.35.(3)由题意可知,定义随机变量如下:k=则k显然服从两点分布,则六类电影的分布列及方差计算如下:第一类电影:110P0.40.65D(1)=0.40.6=0.24;第二类电影:210P0.20.8D(2)=0.20.8=0.16;第三类电影:310P0.150.85D(3)=0.150.85=0.1275;第四类电影:410P0.250.75D(4)=0.250.75=0.1875;第五类电影:510P0.20.8D(5)=0.20.8=0.16;第六类电影:610P0.10.96D(6)=0.10.9=0.09.综上所述,D(1)D(4)D(2)=D(5)D(3)D(6).3.解(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=因此所求概率为(3)记续保人本年度的保费为X,则X的分布列为XP0.85a0.30a0.151.25a0.201.5a0.201.75a0.102a0.05E(X)=0.85a0.30+a0.15+1.25a0.20+1.5a0.20+1.75a0.10+2a0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.解(1)由已知,甲、乙、丙三个部门的员工人数之比为322,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为XP0123随机变量X的数学期望E(X)=0+1+2+3设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=BC,且B与C互斥.由7知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(BC)=P(X=2)+P(X=1)=所以,事件A发生的概率为5.解(1)X可能的取值为10,20,100,-200.根据题意,P(X=10)=;P(X=20)=;P(X=100)=;P(X=-200)=所以X的分布列为X1020100-200P(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=所以,“三盘游戏中至少有一盘出现音乐”的概率为1-P(A1A2A3)=1-=1-因此,玩三盘游戏至少有一盘出现音乐的概率是(3)X的数学期望为E(X)=10+20+100-200=-这表明,获得分数X的均值为负,因此,多次游戏之后分数减少的可能性更大.6.解(1)根据频率分布直方图可知,质量超过505g的产品数量为(0.01+0.05)540=12.由题意得随机变量X的所有可能取值为0,1,2.P(X=0)=;8P(X=1)=;P(X=2)=则随机变量X的分布列为X012P(2)由题意得该流水线上产品的质量超过505g的概率为=0.3.设Y为该流水线上任取5件产品质量超过505g的产品数量,则YB(5,0.3).故所求概率为P(Y=2)=0.320.73=0.3087.9
展开阅读全文