过程控制系统实验指导书

上传人:痛*** 文档编号:142118225 上传时间:2022-08-24 格式:DOC 页数:51 大小:10.10MB
返回 下载 相关 举报
过程控制系统实验指导书_第1页
第1页 / 共51页
过程控制系统实验指导书_第2页
第2页 / 共51页
过程控制系统实验指导书_第3页
第3页 / 共51页
点击查看更多>>
资源描述
过程控制系统实验指导书自动化工程学院自动控制系实验一 实验装置 * 学时数:2实验目的:(1) 了解过程控制系统实验装置的总体组成部分。(2) 了解各部分的主要构件及作用。(3) 特别应知道以下内容:各种被控对象的位置、检测元件的位置及用途、执行器件(动力器件) 的位置及用途、供水管线各阀门与供水方式间的关系、智能仪表的调节方式及含意。实验原理: 一 概述“THSA-1型过控综合自动化控制系统实验平台”是由实验控制对象、实验控制台及上位监控PC机三部分组成。是一套集自动化仪表技术、计算机技术、通讯技术、自动控制技术及现场总线技术为一体的多功能实验设备。该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈-反馈控制,滞后控制、比值控制,解耦控制等多种控制形式。本装置还可根据用户的需要设计构成AI智能仪表,DDC远程数据采集,DCS分布式控制,PLC可编程控制,FCS现场总线控制等多种控制系统。被控对象实验对象总貌图如图1-1所示:被控对象由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。检测装置(1) 压力传感器、变送器:三个压力传感器分别用来对上、中、下三个水箱的液位进行检测,其量程为05KP,精度为0.5级。采用工业用的扩散硅压力变送器,带不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。采用标准二线制传输方式,工作时需提供24V直流电源,输出:420mADC。(2) 温度传感器:装置中采用了六个Pt100铂热电阻温度传感器,分别用来检测锅炉内胆、锅炉夹套、盘管(有3个测试点)以及上水箱出口的水温。Pt100测温范围:-200+420。经过调节器的温度变送器,可将温度信号转换成420mA直流电流信号。Pt100传感器精度高,热补偿性较好。(3) 流量传感器、变送器:三个涡轮流量计分别用来对由电动调节阀控制的动力支路、由变频器控制的动力支路及盘管出口处的流量进行检测。它的优点是测量精度高,反应快。采用标准二线制传输方式,工作时需提供24V直流电源。流量范围:01.2m3/h;精度:1.0%;输出:420mADC。执行机构(1) 电动调节阀:采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电动调节阀型号为:QSVP-16K。具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作方便等优点,电源为单相220V,控制信号为420mADC或15VDC,输出为420mADC的阀位信号,使用和校正非常方便。(2) 水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。泵体完全采用不锈钢材料,以防止生锈,使用寿命长。本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动。(3) 电磁阀:在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用。电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/2,最大压力为7Kg/2 ;工作温度:580;工作电压:24VDC。(4) 三相电加热管:由三根1.5KW电加热管星形连接而成,用来对锅炉内胆内的水进行加温,每根加热管的电阻值约为50左右。二 控制屏组件电源控制屏面板:充分考虑人身安全保护,装有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。图1-2为电源控制屏示意图。合上总电源空气开关及钥匙开关,此时三只电压表均指示380V左右,定时器兼报警记录仪数显亮,停止按钮灯亮。此时打开照明开关、变频器开关及24V开关电源即可提供照明灯,变频器和24V电。按下启动按钮,停止按钮灯熄,启动按钮灯亮,此时合上三相电源、单相、单相、单相空气开关即可提供相应电源输出,作为其他设备的供电电源。图1-2 电源控制屏示意图I/O信号接口面板:该面板的作用主要是通过航空插头(一端与对象系统连接)将各传感器检测信号及执行器控制信号同面板上自锁紧插孔相连,便于学生自行连线组成不同的控制系统。交流变频控制挂件:采用日本三菱公司的FR-S520S-0.4K-CH(R)型变频器,控制信号输入为420mADC或05VDC,交流220V变频输出用来驱动三相磁力驱动泵。变频器常用参数设置:P 301;P 531;P 624;P 790。三相移相SCR调压装置、位式控制接触器:采用三相可控硅移相触发装置,输入控制信号为420mA标准电流信号,其移相触发角与输入控制电流成正比。输出交流电压用来控制电加热器的端电压,从而实现锅炉温度的连续控制。位式控制接触器和AI-708仪表一起使用,通过AI-708仪表输出继电器触点的通断来控制交流接触器的通断,从而完成锅炉水温的位式控制实验。智能仪表控制组件:(1)AI智能调节仪表挂件采用上海万迅仪表有限公司生产的AI系列全通用人工智能调节仪表,其中SA-12智能调节仪控制挂件为AI-818型,SA-13智能位式调节仪为AI-708型。AI-818型仪表为PID控制型,输出为420mADC信号;而AI-708型仪表为位式控制型,输出为继电器触点型开关量信号。AI仪表常用参数设置:CtrL:控制方式。CtrL0,采用位式控制;CtrL1,采用AI人工智能调节/PID调节;CtrL2,启动自整定参数功能;CtrL3,自整定结束。Sn:输入规格。Sn21,Pt100热电阻输入;Sn32,0.21VDC电压输入;Sn33,15VDC电压输入。DIL:输入下限显示值,一般DIL0。DIH:输入上限显示值。输入为液位信号时,DIH50.0;输入为热电阻信号时,DIH100;输入为流量信号时,DIH100。OP1:输出方式,一般OP14为420mA线性电流输出。CF:系统功能选择。CF0为内部给定,反作用调节;CF1为内部给定,正作用调节;CF8为外部给定,反作用调节;CF9为外部给定,正作用调节。Addr:通讯地址。实验中各仪表通讯地址不允许相同。P、I、D参数可根据实验需要调整,其他参数请参考默认设置。(2)比值、前馈补偿及解耦装置挂件比值、前馈补偿装置同调节器一起使用,其原理如图1-3所示。上面一路作为比值器,输入电压经过电压跟随器、反相比例放大器、反相器输出05V电压。当上面一路作为干扰输入,下面一路作为调节器输出时,两路相加或相减(通过钮子开关切换),再经过I/V变换输出420mA电流。图1-3 比值、前馈补偿器原理图解耦装置同调节器一起使用,其原理如图1-4所示。上面一路的输入对输出的影响,以及下面一路的输入对输出的影响均为1:1的关系;两路之间相互的影响通过可调比例放大器及加法器实现。值得注意的是上面一路对下面一路的影响可通过钮子开关选择相加或相减。 图1-4 解耦装置原理图 三 实验要求及安全操作规程实验前的准备:实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题,并按实验项目准备记录等。实验前应了解实验装置中的对象、水泵、变频器和所用控制组件的名称、作用及其所在位置。以便于在实验中对它们进行操作和观察。熟悉实验装置面板图,要求做到:由面板上的图形、文字符号能准确找到该设备的实际位置。熟悉工艺管道结构、相关手动阀门的位置及其作用。实验过程的基本程序:1明确实验任务;2提出实验方案;3画实验接线图;4进行实验操作,做好观测和记录;5整理实验数据,得出结论,撰写实验报告。实验安全操作规程:1实验之前确保所有电源开关均处于“关”的位置。2接线或拆线必须在切断电源的情况下进行,接线时要注意电源极性。完成接线后,正式投入运行之前,应严格检查安装、接线是否正确,并请指导老师确认无误后,方能通电。3在投运之前,请先检查管道及阀门是否已按实验指导书的要求打开,储水箱中是否充水至三分之二以上,以保证磁力驱动泵中充满水,磁力驱动泵无水空转易造成水泵损坏。4在进行温度试验前,请先检查锅炉内胆内水位,至少保证水位超过液位指示玻璃管上面的红线位置,无水空烧易造成电加热管烧坏。5实验之前应进行变送器零位和量程的调整,调整时应注意电位器的调节方向,并分清调零电位器和满量程电位器。6仪表应通电预热15分钟后再进行校验。7小心操作,切勿乱扳硬拧,严防损坏仪表。实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤: 按实验内容分步讲解实验报告要求:图1-1 实验对象总貌图实验二 单容自衡水箱液位特性测试 *学时数:2实验目的1掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;实验原理:被控对象数学模型的建立通常采用下列二种方法。一种是分析法,即根据过程的机理,物料或能量平衡关系求得它的数学模型;另一种是用实验的方法确定。本装置采用实验方法通过被控对象对阶跃信号的响应来确定它的参数及数学模型。由于此法较简单,因而在过程控制中得到了广泛地应用。所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。根据动态物料平衡关系有Q1-Q2=A (2-1)将式(2-1)表示为增量形式Q1-Q2=A (2-2)式中:Q1,Q2,h分别为偏离某一平衡状态的增量; A水箱截面积。在平衡时,Q1=Q2,0;当Q1发生变化时,液位h随之变化,水箱出 图2-1 单容自衡水箱特性测试系统口处的静压也随之变化,Q2也发生变化 (a)结构图 (b)方框图。由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q2与h成正比关系,而与阀F1-11的阻力R成反比,即Q2= 或 R= (2-3) 式中:R阀F1-11的阻力,称为液阻。将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q2,即可得到单容水箱的数学模型为W0(s)= (2-4) 式中T为水箱的时间常数,TRC;K为放大系数,KR;C为水箱的容量系数。若令Q1(s)作阶跃扰动,即Q1(s)=,x0=常数,则式(2-4)可改写为H(s)=K-对上式取拉氏反变换得h(t)=Kx0(1-e-t/T) (2-5) 当t时,h()-h(0)=Kx0,因而有K= (2-6) 当t=T时,则有h(T)=Kx0(1-e-1)=0.632Kx0=0.632h() (2-7) 式(2-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2(a)所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。也可由坐标原点对响应曲线作切线OA,切线与稳态值交点A所对应的时间就是该时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。图2-2 单容水箱的阶跃响应曲线如果对象具有滞后特性时,其阶跃响应曲线则为图2-2(b),在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间,BC为对象的时间常数T,所得的传递函数为:H(S)= 实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验选择下水箱作为被测对象(也可选择上水箱或中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。图2-3 仪表控制单容水箱特性测试实验接线图2接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相、单相空气开关,给智能仪表及电动调节阀上电。3打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。4在上位机监控界面中将智能仪表设置为“手动”控制,并将输出值设置为一个合适的值,此操作需通过调节仪表实现。5合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。6待下水箱液位平衡后,突增(或突减)智能仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值,液位的响应过程曲线将如图2-4所示。图2-4 单容下水箱液位阶跃响应曲线7根据前面记录的液位值和仪表输出值,按公式(2-6)计算K值,再根据图2-2中的实验曲线求得T值,写出对象的传递函数。实验报告要求:1画出单容水箱液位特性测试实验的结构框图。2根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。思考题1做本实验时,为什么不能任意改变出水阀F1-11开度的大小?2用响应曲线法确定对象的数学模型时,其精度与那些因素有关?实验三 双容水箱特性的测试学时数:2实验目的1掌握双容水箱特性的阶跃响应曲线测试方法;2根据由实验测得双容液位的阶跃响应曲线,确定其特征参数K、T1、T2及传递函数;实验原理:图2-9 双容水箱对象特性测试系统(a)结构图 (b)方框图由图2-9所示,被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。根据本章第一节单容水箱特性测试的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G1(s)G2(s)= (2-9) 式中Kk1k2,为双容水箱的放大系数,T1、T2分别为两个水箱的时间常数。本实验中被测量为下水箱的液位,当中水箱输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-10所示。由图2-10可见,上水箱液位的响应曲线为一单调上升的指数函数(图2-10 (a));而下水箱液位的响应曲线则呈S形曲线(图2-10 (b)),即下水箱的液位响应滞后了,它滞后的时间与阀F1-10和F1-11的开度大小密切相关。图2-10 双容水箱液位的阶跃响应曲线(a)中水箱液位 (b)下水箱液位双容对象两个惯性环节的时间常数可按下述方法来确定。在图2-11所示的阶跃响应曲线上求取:(1) h2(t)|t=t1=0.4 h2()时曲线上的点B和对应的时间t1;(2) h2(t)|t=t2=0.8 h2()时曲线上的点C和对应的时间t2。图2-11 双容水箱液位的阶跃响应曲线 然后,利用下面的近似公式计算式 (2-10) (2-11) (2-12) 0.32t1/t20.46由上述两式中解出T1和T2,于是得到如式(2-9)所示的传递函数。在改变相应的阀门开度后,对象可能出现滞后特性,这时可由S形曲线的拐点P处作一切线,它与时间轴的交点为A,OA对应的时间即为对象响应的滞后时间。于是得到双容滞后(二阶滞后)对象的传递函数为:G(S)= (2-13) 实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验选择中水箱和下水箱串联作为被测对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求F1-10开度稍大于F1-11的开度),其余阀门均关闭。1. 控制台接线如图2-32接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相、单相空气开关,给智能仪表及电动调节阀上电。3打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验二、双容自衡水箱对象特性测试”,进入实验二的监控界面。4在上位机监控界面中将智能仪表设置为“手动”输出,并将输出值设置为一个合适的值(一般为最大值的4070%,不宜过大,以免水箱中水溢出),此操作需通过调节仪表实现。5合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。6液位平衡后,突增(或突减)仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值,液位的响应过程曲线将如图2-13所示。图2-12 双容水箱液位阶跃响应曲线 7根据前面记录的液位和仪表输出值,按公式(2-10)计算K值,再根据图2-11中的实验曲线求得T1、T2值,写出对象的传递函数。实验报告要求:1画出双容水箱液位特性测试实验的结构框图。2根据实验得到的数据及曲线,分析并计算出双容水箱液位对象的参数及传递函数。思考题1做本实验时,为什么不能任意改变两个出水阀门开度的大小?2用响应曲线法确定对象的数学模型时,其精度与那些因素有关?3如果采用上水箱和中水箱做实验,其响应曲线与用中水箱和下水箱做实验的曲线有什么异同?并分析差异原因。4引起双容对象滞后的因素主要有哪些?实验四 锅炉内胆温度特性的测试学时数:4实验目的:1了解锅炉内胆温度特性测试系统的组成原理。2 掌握锅炉内胆温度特性的测试方法。实验原理:图2-13 锅炉内胆温度特性测试系统(a)结构图 (b)方框图由图2-13可知,本实验的被测对象为锅炉内胆的水温,通过调节器“手动”输出,控制三相电加热管的端电压,从而达到控制锅炉内胆水温的目的。锅炉内胆水温的动态变化过程可用一阶常微分方程来描述,即其数学模型为一阶惯性环节。可以采用两种方案对锅炉内胆的温度特性进行测试:(一) 锅炉夹套不加冷却水将锅炉内胆加适量水,手动操作调节器的输出,使三相可控硅调压模块的输出电压为80100V左右。此电压加在加热管两端,内胆中的水温因而逐渐上升。当内胆中的水温上升到某一值时,水的吸热和放热过程趋于平衡,从而使内胆中的水温达到某一值。(二) 锅炉夹套加冷却水当锅炉夹套中注满冷却水,这相当于改变了锅炉内胆环境的温度,使其散热作用增强。显然,要维持内胆原有的水温,则必须提高三相调压模块的输出电压,即增加调节器的输出值。实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:1本实验选择锅炉内胆水温作为被测对象,实验之前先将储水箱中贮足水量,然后将阀门F2-1、F2-6、F1-13全开,将锅炉出水阀门F2-12、F2-11关闭,其余阀门也关闭。将变频器的A、B、C三端连接到三相磁力驱动泵(220V),手动调节变频器频率,给锅炉内胆贮一定的水量(要求至少高于液位指示玻璃管的红线位置),然后关闭阀F1-13,打开阀F1-12,为夹套供水作好准备。2将SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图2-14连接实验系统。图2-14 仪表控制锅炉内胆水温特性测试接线图3打开上位机MCGS组态环境,按照MCGS使用手册中的组态方法和“智能仪表控制系统”的组态构思,并结合本实验的要求进行上位机监控界面的组态。4接通总电源空气开关和钥匙开关,按下启动按钮,合上单相空气开关,给智能仪表上电。5打开上位机MCGS组态环境,打开自己组态好的工程,然后进入MCGS运行环境,进入实验的监控界面。6在上位机监控界面中将智能仪表设置为“手动”状态,并调节仪表输出值,使三相调压模块输出线电压为80100V左右。此操作也可通过调节仪表实现。7合上三相电源空气开关,三相电加热管通电加热,适当增加/减少智能仪表的输出量,使锅炉内胆的水温处于某一平衡状态。记录此时的仪表输出值和温度值。8待水温平衡后,突增(或突减)仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量过大可能导致系统无法平衡),于是内胆的水温便离开原平衡状态,经过一段时间后,内胆水温进入新的平衡状态,记录此时的仪表输出值和温度值,并观察温度的响应过程曲线。9将内胆中已加热的水通过出水阀放掉,重新注满冷水;并启动变频器以较小的频率往夹套中打冷却水,重复第68步,观察实验的过程曲线与前面不加冷水的过程有何不同。10根据前面记录的温度和仪表输出值,按公式(2-6)计算K值,再根据实验曲线求得T值,写出对象的传递函数。实验报告要求:1根据实验数据及曲线,按本章第一节单容水箱特性测试的原理及分析方法求得锅炉内胆温度的特性参数K、T、,写出其传递函数。2分析比较计算机在两种不同条件下所测得的内胆温度变化曲线。实验五 电动调节阀流量特性的测试学时数:2实验目的:1了解电动调节阀的结构与工作原理。2通过实验进一步了解电动调节阀的流量特性。实验原理:电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要执行元件。电动调节阀接受来自调节器的420mADC信号u,将其转换为相应的阀门开度l,以改变阀截流面积f的大小,从而改变流量。图2-15为电动调节阀与管道的连接图。图2-15 电动阀连接示意图调节阀的静态特性Kvdq/du,其中u是调节器输出的控制信号,q是被调介质流过阀门的相对流量。调节阀的动态特性Gv(s)=Kv/(Tvs+1),其中Tv为调节阀的时间常数,一般小,可以忽略。但在如流量控制这样的快速过程中, Tv有时不能忽略。调节阀结构特性是指阀芯与阀座间节流面积与阀门开度之间的关系,通常有四种结构,即快开特性、直线特性、抛物线特性、等百分比特性。调节阀的流量特性,是指介质流过阀门的相对流量与阀门相对开度之间的关系,因为执行机构静态时输出l(阀门的相对开度)与u成比例关系,所以调节阀静态特性又称调节阀流量特性,即qf(l)。式中:qQ/Q100为相对流量,即调节阀某一开度流量Q与全开流量Q100之比;lL/L100相对开度,即调节阀某一开度行程L与全行程L100之比。实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:图2-16 电动阀流量特性测试系统结构图1本实验选择电动调节阀流量作为被测对象,实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8、F1-11全开,其余阀门全关闭。图2-17 仪表控制电动阀流量特性测试接线图2将SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照上面的控制屏接线图2-17连接实验系统。将“FT1电动阀支路流量”钮子开关打到“ON”的位置。3打开上位机MCGS组态环境,仿照“智能仪表控制系统”工程再结合本实验的要求进行组态。4接通总电源空气开关和钥匙开关,按下启动按钮,合上单相、单相空气开关,给智能仪表及电动阀上电。5打开上位机MCGS组态环境,打开自己组态好的工程,然后进入MCGS运行环境,进入实验的监控界面。6将调节器置于“手动”状态,并依次调节其输出量的大小对应于电动阀开度的10%、20%、100%,分别记录不同开度l时通过流量计检测到的管道的流量Q。7由阀门开度l作横坐标,流量Q作纵坐标,画出Q=F(l)的曲线。实验报告要求:1画出电动调节阀流量特性测试实验的结构框图。2根据实验得到的曲线,判别该电动阀的阀体是属于快开特性,等百分比特性还是慢开特性?实验六 单容液位定值控制系统 *学时数:4实验目的:1了解单容液位定值控制系统的结构与组成。2掌握单容液位定值控制系统调节器参数的整定和投运方法。3研究调节器相关参数的变化对系统静、动态性能的影响。4了解P、PI、PD和PID四种调节器分别对液位控制的作用。实验原理:图3-6 中水箱单容液位定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-6所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。若相实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。智能仪表控制1将“SA-12智能调节仪控制”挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。图3-7 智能仪表控制单容液位定值控制实验接线图2接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相、单相空气开关,给智能仪表及电动调节阀上电。3打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验三、单容液位定值控制系统”,进入实验三的监控界面。4在上位机监控界面中点击“启动仪表”。将智能仪表设置为“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过调节仪表实现。5合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使中水箱的液位平衡于设定值。6按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。7待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面三种仅供参考)(2)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;(3)将下水箱进水阀F1-8开至适当开度;(改变负载)(4)接上变频器电源,并将变频器输出接至磁力泵,然后打开阀门F2-1、F2-4,用变频器支路以较小频率给中水箱打水。以上几种干扰均要求扰动量为控制量的515,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-8所示。图3-8 单容水箱液位的阶跃响应曲线8分别适量改变调节仪的P及I参数,重复步骤7,用计算机记录不同参数时系统的阶跃响应曲线。9分别用P、PD、PID三种控制规律重复步骤48,用计算机记录不同控制规律下系统的阶跃响应曲线。实验报告要求:1画出单容水箱液位定值控制实验的结构框图。2用实验方法确定调节器的相关参数,写出整定过程。3根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。4比较不同PID参数对系统的性能产生的影响。5分析P、PI、PD、PID四种控制规律对本实验系统的作用。思考题:如果采用下水箱做实验,其响应曲线与中水箱的曲线有什么异同?并分析差异原因。实验七 双容水箱液位定值控制系统学时数:实验目的:1通过实验进一步了解双容水箱液位的特性。2掌握双容水箱液位控制系统调节器参数的整定与投运方法。3研究调节器相关参数的改变对系统动态性能的影响。4研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。本实验系统结构图和方框图如图3-13所示。图3-13 双容液位定值控制系统(a)结构图 (b)方框图实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验选择中水箱和下水箱串联作为双容对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。具体实验内容与步骤可根据本实验的目的与原理参照前一节单容液位定值控制中的相应方案进行。实验的接线与单容对象特性测试的接线图完全一样。值得注意的是手自动切换的时间为:当中水箱液位基本稳定不变(一般约为35cm)且下水箱的液位趋于给定值时切换为最佳。实验报告要求:1画出双容水箱液位定值控制实验的结构框图。2用实验方法确定调节器的相关参数,写出整定过程。3根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。思考题1如果采用上水箱和中水箱做实验,其响应曲线与本实验的曲线有什么异同?并分析差异原因。2改变比例度和积分时间TI对系统的性能产生什么影响?3为什么本实验比单容液位定值控制系统更容易引起振荡?要达到同样的动态性能指标,在本实验中调节器的比例度和积分时间常数要怎么设置?实验八 锅炉内胆水温定值控制系统学时数:4实验目的:1了解单回路温度控制系统的组成与工作原理。2研究P、PI、PD和PID四种调节器分别对温度系统的控制作用。3了解PID参数自整定的方法及其参数整定在整个系统中的重要性。4分析锅炉内胆动态水温与静态水温在控制效果上有何不同之处?实验原理:本实验以锅炉内胆作为被控对象,内胆的水温为系统的被控制量。本实验要求锅炉内胆的水温稳定至给定量,将铂电阻TT1检测到的锅炉内胆温度信号作为反馈信号,在与给定量比较后的差值通过调节器控制三相调压模块的输出电压(即三相电加热管的端电压),以达到控制锅炉内胆水温的目的。在锅炉内胆水温的定值控制系统中,其参数的整定方法与其它单回路控制系统一样,但由于加热过程容量时延较大,所以其控制过渡时间也较长,系统的调节器可选择PD或PID控制。本实验系统结构图和方框图如图3-15所示。图3-15 锅炉内胆温度特性测试系统(a)结构图 (b)方框图可以采用两种方案对锅炉内胆的水温进行控制:(一) 锅炉夹套不加冷却水(静态)(二) 锅炉夹套加冷却水(动态)显然,两种方案的控制效果是不一样的,后者比前者的升温过程稍慢,降温过程稍快,过渡过程时间稍短。实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验选择锅炉内胆水温作为被控对象,实验之前先将储水箱中贮足水量,然后将阀门F2-1、F2-6、F1-13全开,将锅炉出水阀门F2-12关闭,其余阀门也关闭。将变频器输出A、B、C三端连接到三相磁力驱动泵(220V),打开变频器电源并手动调节其频率,给锅炉内胆贮一定的水量(要求至少高于液位指示玻璃管的红线位置),然后关闭阀F1-13,打开阀F1-12,为给锅炉夹套供冷水做好准备。请同学自己拟定实验连线图。智能仪表控制1将SA-11、SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照第二章第三节的控制屏接线图2-14连接实验系统。2接通总电源空气开关和钥匙开关,按下启动按钮,合上单相空气开关,给智能仪表上电。3打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验六、锅炉内胆水温定值控制”,进入实验六的监控界面。4在上位机监控界面中点击“启动仪表”,将智能仪表设置为“手动”,并将输出值设置为一个合适的值,此操作可通过调节仪表实现。5合上三相电源空气开关,三相电加热管通电加热,适当增加/减少智能仪表的输出量,使锅炉内胆的水温平衡于设定值。6按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PID控制规律,并按整定后的PID参数进行调节器参数设置。7待锅炉内胆水温稳定于给定值时,将调节器切换到“自动”状态,待水温平衡后,突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,一般为设定值的515%为宜),于是锅炉内胆的水温便离开原平衡状态,经过一段调节时间后,水温稳定至新的设定值,记录此时智能仪表的设定值、输出值和仪表参数,内胆水温的响应过程曲线将如图3-16所示。图3-16 锅炉内胆水温阶跃响应曲线8适量改变调节仪的PID参数,重复步骤7,用计算机记录不同参数时系统的响应曲线。9打开变频器电源开关,给变频器上电,将变频器设置在适当的频率(19Hz左右),变频器支路开始往锅炉夹套打冷水,重复步骤48,观察实验的过程曲线与前面不加冷水的过程有何不同。10分别采用P、PI、PD控制规律重复实验,观察在不同的PID参数值下,系统的阶跃响应曲线。实验报告要求:1画出锅炉内胆水温定值控制实验的结构框图。2用实验方法确定调节器的相关参数,写出整定过程。3根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。4比较不同PID参数对系统性能产生的影响。5分析P、PI、PD、PID四种控制方式对本实验系统的作用。思考题1在温度控制系统中,为什么用PD和PID控制,系统的性能并不比用PI控制时有明显地改善?2为什么内胆动态水的温度控制比静态水时的温度控制更容易稳定,动态性能更好?实验九 单闭环流量定值控制系统学时数:4实验目的:1了解单闭环流量控制系统的结构组成与原理。2掌握单闭环流量控制系统调节器参数的整定方法。3研究调节器相关参数的变化对系统静、动态性能的影响。4研究P、PI、PD和PID四种控制分别对流量系统的控制作用。实验原理:图3-27 单闭环流量定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-27所示。被控量为电动调节阀支路(也可采用变频器支路)的流量,实验要求电动阀支路流量稳定至给定值。将涡轮流量计FT1检测到的流量信号作为反馈信号,并与给定量比较,其差值通过调节器控制电动调节阀的开度,以达到控制管道流量的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI控制,并且在实验中PI参数设置要比较大。实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验选择电动阀支路流量作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8、F1-11全开,其余阀门均关闭。将“FT1电动阀支路流量”钮子开关拨到“ON”的位置。具体实验内容与步骤可根据本实验的目的与原理参照前面的单闭环定值控制中相应方案进行,下面只给出实验的接线图。实验报告要求:1画出单闭环流量定值控制实验的结构框图。2用实验方法确定调节器的相关参数,写出整定过程。3根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。4. 分析P、PI、PD、PID四种控制方式对本实验系统的作用。思考题1如果采用变频器支路做实验,其响应曲线与电动阀支路的曲线有什么异同?并分析差异的原因。2改变比例度和积分时间TI对系统的性能产生什么影响?3在本实验中为什么采用PI控制规律,而不用纯P控制规律?实验十 水箱液位串级控制系统学时数:4实验目的:1通过实验了解水箱液位串级控制系统组成原理。2掌握水箱液位串级控制系统调节器参数的整定与投运方法。3了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。实验原理:本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。本实验系统结构图和方框图如图5-2所示。图5-2 水箱液位串级控制系统(a)结构图 (b)方框图实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。智能仪表控制1将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。图5-3 智能仪表控制水箱液位串级控制实验接线图2接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相、单相空气开关,给智能仪表1及电动调节阀上电。3打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验十、水箱液位串级控制系统”,进入实验十的监控界面。4在上位机监控界面中点击“启动仪表1”、“启动仪表2”。将主控仪表设置为“手动”,并将输出值设置为一个合适的值,此操作可通过调节仪表实现。5合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少主调节器的输出量,使下水箱的液位平衡于设定值,且中水箱液位也稳定于某一值(此值一般为35cm,以免超调过大,水箱断流或溢流)。6按本章第一节中任一种整定方法整定调节器参数,并按整定得到的参数进行调节器设定。7待液位稳定于给定值时,将调节器切换到“自动”状态,待液位平衡后,通过以下几种方式加干扰:(1) 突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(2)打开阀门F2-1、F2-4(或F2-5),用变频器支路以较小频率给中水箱(或下水箱)打水。(干扰作用在主对象或副对象)(3)将阀F1-5、F1-13开至适当开度(改变负载);(4)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;以上几种干扰均要求扰动量为控制量的515,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,下水箱液位的响应过程曲线将如图5-4所示。图5-4 下水箱液位阶跃响应曲线8适量改变主、副控调节仪的PID参数,重复步骤7,用计算机记录不同参数时系统的响应曲线。实验报告要求:1画出水箱液位串级控制系统的结构框图。2用实验方法确定调节器的相关参数,并写出整定过程。3根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。思考题1试述串级控制系统为什么对主扰动(二次扰动)具有很强的抗扰能力?如果副对象的时间常数与主对象的时间常数大小接近时,二次扰动对主控制量的影响是否仍很小,为什么?2当一次扰动作用于主对象时,试问由于副回路的存在,系统的动态性能比单回路系统的动态性能有何改进?3串级控制系统投运前需要作好那些准备工作?主、副调节器的正反作用方向如何确定?4为什么本实验中的副调节器为比例(P)调节器?5改变副调节器的比例度,对串级控制系统的动态和抗扰动性能有何影响,试从理论上给予说明。6评述串级控制系统比单回路控制系统的控制质量高的原因?实验十一 三闭环液位控制系统学时数:4实验目的:1通过实验了解三闭环液位控制系统的组成与工作原理。2掌握三闭环液位控制系统调节器参数的整定与投运方法。3了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。4主、副调节器参数的改变对系统性能的影响。实验原理:图5-9 三闭环液位控制系统(a)结构图 (b)方框图图5-9为三闭环串级控制系统的结构图和方框图。本实验系统是由上、中、下三个水箱串联组成,下水箱的液位为系统的主控制量,其余两个水箱的液位均为副控制量。与前面的双闭环液位控制系统相比,本系统多了一个内回路,其目的是减小上水箱的时间常数,以加快系统的响应。本系统的控制目的,不仅要使下水箱的液位等于给定值,而且当扰动出现在上、中水箱时,由于它们的时间常数均小于下水箱,故在下水箱的液位未发生明显变化前,扰动所产生的影响已通过内回路的控制及时地被消除。当然,扰动若作用于下水箱,系统的被控制量必然要受其影响,但由于本系统有两个内回路,因而大大减小了上、中水箱的时间常数,使它比具有上、中、下三个水箱串接的单回路系统动态响应快得多。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P或PI调节器。实验仪器:THSA-1型过控综合自动化控制系统实验平台实验内容与步骤:本实验将上、中、下三只水箱串联组成三闭环液位控制系统。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将阀门F1-9、F1-10、F1-11开至适当开度(要求阀门开度F1-9 F1-10 F1-11),其余阀门均关闭。具体实验内容与步骤可根据本实验的目的与原理参照前一节水箱液位串级控制中相应方案进行,实验的接线可按照下面的接线图连接。图5-10 智能仪表控制三闭环液位串级控制实验接线图实验报告要求:1画出三闭环水箱液位串级控制系统的结构框图。2用实验方法确定调节器的相关参数,并写出整定过程。3根据扰动分别作用于三个对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。4分析主、副调节器采用不同PID参数时对系统性能产生的影响。思考题1试述串级控制系统为什么对主扰动(二次扰动)具有很强的抗扰能力?如果副对象的时间常数与主对象的时间常数大小接近时,二次扰动对主控制量的影响是否仍很小,为什么?2当一次扰动作用于主对象时,试问由于副回路的存在,系统的动态性能比单回路系统的动态性能有何改进?3串级控制系统投运前需要作好那些准备工作?主、副调节器的正反作用方向如何确定?4为什么本实验中的副调节器为比例(P)调节器?5改变副调节器的比例度,对串级控制系统的动态和抗扰动性能有何影响,试从理论上给予说明。6评述串级控制系统比单回路控制系统的控制质量高的原因?实验十二 锅炉内胆水温与循环水流量串级控制系统学时数:4实
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!