2018年高中数学 第三章 数系的扩充与复数 3.1.3 复数的几何意义课件3 新人教B版选修2-2.ppt

上传人:jun****875 文档编号:14065740 上传时间:2020-07-02 格式:PPT 页数:15 大小:652KB
返回 下载 相关 举报
2018年高中数学 第三章 数系的扩充与复数 3.1.3 复数的几何意义课件3 新人教B版选修2-2.ppt_第1页
第1页 / 共15页
2018年高中数学 第三章 数系的扩充与复数 3.1.3 复数的几何意义课件3 新人教B版选修2-2.ppt_第2页
第2页 / 共15页
2018年高中数学 第三章 数系的扩充与复数 3.1.3 复数的几何意义课件3 新人教B版选修2-2.ppt_第3页
第3页 / 共15页
点击查看更多>>
资源描述
知识回顾,1、复数的概念:形如_的数叫做复数,a,b分别叫做它的_。为纯虚数 实数 非纯虚数 2、复数Z1=a1+b1i与Z2=a2+b2i 相等的充要条件是_。,a1=a2,b1=b2,a+bi (a,bR),实部和虚部,a=0,b0,b=0,a 0,b0,复数的几何意义,知识回顾,1、复数的概念:形如_的数叫做复数,a,b分别叫做它的_。为纯虚数 实数 非纯虚数 2、复数Z1=a1+b1i与Z2=a2+b2i 相等的充要条件是_。,a1=a2,b1=b2,a+bi (a,bR),实部和虚部,a=0,b0,b=0,a 0,b0,引例:已知 ,其中,解题思考:,复数相等,转化,求方程组的解的问题,一种重要的数学思想:转化思想,求x与y?,同样的转化思想我们在哪里还遇见过?,思考?,向量相等,转化,求方程组的解的问题,复数z=a+bi,直角坐标系中的点Z(a,b),x,y,o,b,a,Z(a,b),建立了平面直角坐标系来表示复数的平面,x轴-实轴,y轴-虚轴,(数),(形),-复数平面 (简称复平面),一一对应,z=a+bi,复数的几何意义(一),复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,复数的几何意义(二),x,y,o,b,a,Z(a,b),z=a+bi,x,O,z=a+bi,y,复数的绝对值,(复数的模),的几何意义:,Z (a,b),对应平面向量 的模| |,即复数 z=a+bi在复平面上对应的点Z(a,b)到原点的距离。,| z | =,y,复数的共轭,z=a+bi的共轭复数 z=a-bi,例1:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围。,一种重要的数学思想:数形结合思想,练习:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值。,解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),,(m2+m-6)-2(m2+m-2)+4=0,,m=1或m=-2。,例2:求下列复数的模: (1)z1=-5i (2)z2=-3+4i (3)z3=5-5i,(4)z4=1+mi(mR) (5)z5=4a-3ai(a0),( 5 ),( 5 ),(5a ),x,y,O,设z=x+yi(x,yR),例3.满足|z|=5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,图形:,以原点为圆心,5为半径的圆上,5,x,y,O,设z=x+yi(x,yR),变式:. 满足3|z|5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,3,3,3,3,图形:,以原点为圆心, 半径3至5的圆环内,变式:已知复数m=23i,若复数z满足不等式|zm|=1,则z所对应的点的集合是什么图形?,以点(2, 3)为圆心, 1为半径的圆上,已知复数 , 求以下各式取值范围 (1) (2) (3),例题解析,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!