2019九年级数学上册 第二十四章 圆章末检测题(B)新人教版

上传人:ning****hua 文档编号:139581429 上传时间:2022-08-22 格式:DOCX 页数:7 大小:641.23KB
返回 下载 相关 举报
2019九年级数学上册 第二十四章 圆章末检测题(B)新人教版_第1页
第1页 / 共7页
2019九年级数学上册 第二十四章 圆章末检测题(B)新人教版_第2页
第2页 / 共7页
2019九年级数学上册 第二十四章 圆章末检测题(B)新人教版_第3页
第3页 / 共7页
点击查看更多>>
资源描述
第二十四章圆章末检测题(B)一、选择题(每小题3分,共30分)1下列四个命题:直径所对的圆周角是直角;圆既是轴对称图形,又是中心对称图形;在同圆中,相等的圆周角所对的弦相等;三点确定一个圆其中正确命题的个数为()A1B2C3D42O的半径为5,同一平面内有一点P,且OP=7,则P与O的位置关系是()AP在圆内BP在圆上CP在圆外D无法确定3如图,A,B,C在O上,OAB=22.5,则ACB的度数是()A11.5B112.5C122.5D135第3题图第5题图第7题图第8题图4正多边形的一边所对的中心角与它的一个外角的关系是()A相等B互余C互补D互余或互补5如图所示,在一圆形展厅的圆形边缘上安装监视器,每台监视器的监控角度是35,为了监视整个展厅,最少需要在圆形的边缘上安装几个这样的监视器()A4台B5台C6台D7台6已知O的直径是10,圆心O到直线l的距离是5,则直线l和O的位置关系是()A相离B相交C相切D外切7如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120,则围成的圆锥模型的高为()ArB22rC10rD3r8如图,已知AB是O的直径,AD切O于点A,点C是EB的中点,则下列结论不成立的是()AOCAEBEC=BCCDAE=ABEDACOE9如图,在ABC中,C=90,AC=8,BC=4,分别以AC,BC为直径画半圆,则图中阴影部分的面积为()A10-8B10-16C10D5第9题图第10题图10如图,已知直线y=34x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,则PAB面积的最大值是()1A8B12C212D172二、填空题(每小题3分,共24分)P11用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设_.12如图,是O的直径BA延长线上一点,PD交O于点C,且PC=OD,如果P=24,则DOB=_.第12题图第13题图第14题图第15题图13如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的直径为_.14如图同心圆,大O的弦AB切小O于P,且AB=6,则圆环的面积为_.15如图,正五边形ABCDE内接于O,F是O上一点,则CFD=_.16如图,PA,PB分别切O于A,B,并与O的切线,分别相交于C,已知PCD的周长等于10cm,则PA=_cm第16题图第17题图第18题图17如图所示,在平面直角坐标系xOy中,半径为2的P的圆心P的坐标为(-3,0),将P沿x轴正方向平移,使P与y轴相切,则平移的距离为_.18如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为_.三、解答题(共66分)19(6分)如图,一块直角三角尺形状的木板余料,木工师傅要在此余料上锯出一块圆形的木板制作凳面,要想使锯出的凳面的面积最大.(1)请你试着用直尺和圆规画出此圆(要求尺规作图,保留作图痕迹,不写作法)(2)若此RtABC的直角边分别为30cm和40cm,试求此圆凳面的面积第19题图第20题图20(6分)如图,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD,BC于F,G,延长BA交圆于E求证:EF=FG21(8分)如图,在O中,半径OA弦BC,点E为垂足,点D在优弧上(1)若AOB=56,求ADC的度数;(2)若BC=6,AE=1,求O的半径2第21题图第22题图第23题图22(8分)如图,ABC内接于O,AB=8,AC=4,D是AB边上一点,P是优弧BAC的中点,连接PA,PB,PC,PD,当BD的长度为多少时,PAD是以AD为底边的等腰三角形?并加以证明23(8分)如图,半径为R的圆内,ABCDEF是正六边形,EFGH是正方形(1)求正六边形与正方形的面积比;(2)连接OF,OG,求OGF24(8分)如图,在ABC中,AB=AC,以AB为直径的O分别与BC,AC交于点D,E,过点D作O的切线DF,交AC于点F(1)求证:DFAC;(2)若O的半径为4,CDF=22.5,求阴影部分的面积第24题图第25题图第26题图25(10分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60(1)求ABC的度数;(2)求证:AE是O的切线;(3)当BC=4时,求劣弧AC的长附加题(15分,不计入总分)26(12分)如图,A是半径为12cm的O上的定点,动点P从A出发,以2cm/s的速度沿圆周逆时针运动,当点P回到点A立即停止运动(1)如果POA=90,求点P运动的时间;(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与O的位置关系,并说明理由第二十四章圆章末检测题(B)参考答案一、选择题31C;提示:正确,不在同一直线上的三点才能确定一个圆,故错误.2C;提示:因为OP=75,所以点P与O的位置关系是点在圆外3B;提示:OA=OB,OAB=OBA=22.5,AOB=135,在优弧AB上任取点E,连接AE、BE,则AEB=12AOB=67.5,又AEB+ACB=180,ACB=112.5,4A;提示:设正多边形是正n边形,则它的一边所对的中心角是360n,正多边形的外角和是360,则每个外角也是360n,所以正多边形的一边所对的中心角与它的一个外角相等5C;提示:如图,连接BO,CO,BAC=35,BOC=2BAC=70.36070=517,最少需要在圆形的边缘上安装6个这样的监视器6C;提示:O的直径是10,O的半径r=5.圆心O到直线l的距离d是5,r=d,直线l和O的位置关系是相切,故选C7B;提示:圆的半径为r,扇形的弧长等于底面圆的周长得出2r设圆锥的母线长为R,则120pR180=2r,解得:R=3r根据勾股定理得圆锥的高为22r,故选B8D;提示:A、点C是EB的中点,OCBE.AB为圆O的直径,AEBE.OCAE,本选项正确;B、BC=CE,BC=CE,本选项正确;C、AD为圆O的切线,ADOA.DAE+EAB=90.EBA+EAB=90,DAE=EBA,本选项正确;D、由已知条件不能推出ACOE,本选项错误.9B;提示:设各个部分的面积为:S1、S2、S3、S4、S5,如图所示:两个半圆的面积和是:S1+S5+S4+S2+S3+S,ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,图中阴影部分的面积为两个半圆的面积减去三角形的面积即阴影部分的面积为11116+4-84=10-16222310C;提示:直线y=x-3与x轴、y轴分别交于A,B两点,4A点的坐标为(4,0),B点的坐标为(0,-3).即OA=4,OB=3,由勾股定理,得AB=5.过C作CMAB于M,连接AC,则由三角形面积公式得:111ABCM=OAOC+OAOB,2225CM=41+34,CM=165.31621C上点到直线y=x-3的最大距离是1+=.45512121PAB面积的最大值是5=.2524二、填空题11一个三角形中有两个角是直角;提示:用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角1272;提示:连接OC,如图,PC=OD,而OC=OD,PC=CO,1=P=24,2=2P=48,而OD=OC,D=2=48,DOB=P+D=721310cm;提示:过点O作ODAB于点D,连接OA,则AD=11AB=8=4cm.设OA=r,则OD=r-2,22AP=BP=1在AOD中,OA2=OD2+AD2,即r2=(r-2)2+42,解得r=5cm故该输水管的直径为10cm.149;提示:大O的弦AB切小O于P,OPAB.1AB=6=3.22在OAP中,AP2=OA2-OP2,OA2-OP2=9.圆环的面积为:OA2-OP2=(OA2-OP2)=91536;提示:如图,连接OD、OC;正五边形ABCDE内接于圆O,DC=11的周长.DOC=360=72.CFD=72=365215O182-4;提示:由题意得,阴影部分面积=2(S扇形AOB-SA0B)=2(-22)=2-4165;提示:如图,设DC与O的切点为E;PA、PB分别是O的切线,且切点为A、B;PA=PB;同理,可得:DE=DA,CE=CB;则PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);PA=PB=5cm.171或5;提示:当P位于y轴的左侧且与y轴相切时,平移的距离为1;当P位于y轴的右侧且与y轴相切时,平移的距离为590p2213602三、解答题19解:(1)如图所示:(2)设三角形内切圆半径为r,则11r(50+40+30)=3040,解得r=10(cm)22故此圆凳面的面积为:102=100(cm2)第19题答图第20题答图20证明:连接AGA为圆心,AB=AG.ABG=AGB.四边形ABCD为平行四边形,ADBC,AGB=DAG,EAD=ABG.DAG=EAD,EF=FG21解:(1)OABC,ACAB.ADCAOB=56,ADC=28;12AOB.5(2)OABC,CE=BE=12BC=3.在PBD与PCA中,PBD=PCA,PBDPCA(SAS)PD=PA.BD=AC=4设O的半径为r,则OE=r-1,OB=r,在BOE中,OE2+BE2=OB2,则32+(r-1)2=r2.解得r=5所以O的半径为5.22解:当BD=4时,PAD是以AD为底边的等腰三角形理由如下:P是优弧BAC的中点,PB=PCPB=PCPB=PC即BD=4时,PAD是以AD为底边的等腰三角形23解:(1)设正六边形的边长为a,则三角形OEF的边EF上的高为32a,则正六边形的面积为:612333aa=a2,正方形的面积为:aa=a2.22正六边形与正方形的面积比332a2:a2=332.(2)OF=EF=FG,OGF=12(180-60-90)=1524解:(1)证明:连接OD,OB=OD,ABC=ODB.AB=AC,ABC=ACB.ODB=ACB.ODAC.DF是O的切线,DFOD.DFAC(2)解:连接OE,DFAC,CDF=22.5,ABC=ACB=67.5.BAC=45.OA=OE,AOE=90.=44=8,S阴影=4-83602O的半径为4,S扇形AOE=90p421=4,AOE(25解:1)ABC与D都是弧AC所对的圆周角,B=D=60.(2)AB是O的直径,ACB=90又B=60BAC=30.BAE=BAC+EAC=30+60=90,即BAAE.AE是O的切线.(3)如图,连接OC,ABC=60,AOC=120.劣弧AC的长为附加题120p48180326解:(1)当POA=90时,根据弧长公式可知点P运动的路程为O周长的间为ts.13或,设点P运动的时4464时,2t=1当点P运动的路程为O周长的14时,2t=3当点P运动的路程为O周长的3AP的长为O周长的14212,解得t=3;4212,解得t=9.当POA=90时,点P运动的时间为3s或9s(2)如图,当点P运动的时间为2s时,直线BP与O相切.理由如下:当点P运动的时间为2s时,点P运动的路程为4cm,连接OP,PA.半径AO=12,O的周长为24.6.POA=60.OP=OA,OAP是等边三角形.OP=OA=AP,OAP=60.AB=OA,AP=AB.OAP=APB+B,APB=B=30.OPB=OPA+APB=90.OPBP,直线BP与O相切7
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!