资源描述
平面直角坐标系学习目标:1、复习与平面直角坐标系相关的知识点 2、会应用知识点解答相关的题目学习重点:点的坐标特征与点的平移学习难点:点的坐标与图形的综合应用课堂引入:1、平面直角坐标系的组成?2、几类特殊点的符号特征? 3、点的坐标的平移规律?自学例题:如图,已知在平面直角坐标系中,ABC的位置如图所示(1)把ABC平移后,三角形某一边上一点P(x,y)的对应点为,平移后所得三角形的各顶点的坐标分别为 、 、 (2)如果第一象限内有一点D,与A、B、C点同为平行四边形ABCD的顶点,则点D的坐标是 (3)请计算ABC的面积。当堂训练:1、如果点A(x,y)在第三象限,则点B(x,y1)在( )A第一象限B第二象限C第三象限D第四象限2、已知点A(1,0),B(0,2),点P在x轴上,且三角形PAB的面积为5,则P点的坐标为( )A(4,0)B(6,0)C(4,0)或(4,0)D(4,0)或(6,0)3、平面直角坐标系中,点A(3,0),B(0,2),以O、A、B为顶点作平行四边形,第四个顶点的坐标不可能是( )A(3,2)B(3,2)C(3,2)D(3,2)4、已知点A在轴上,位于原点右侧,距原点3个单位长度,则点A关于轴的对称点坐标为 。5、在平面直角坐标系中,点A的坐标为(-1,3),线段ABX轴,且AB=4,则点B的坐标为 6、若过点P和点的直线平行于x轴,过点P和的直线平行于y轴,则点P的坐标为( )A、 B、 C、 D、7、坐标平面内,点P在y轴右侧,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是 ( ) A(2,3) B(3,2) C(2,3)或(2,-3) D(3,2)或(3,-2)8、我区某校七年级(1)班周末组织学生进行创新素质实践“活动”,参观了如图中的一些景点和设施,为了便于确定方位,带队老师在图中建立了平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度)(1)若带队老师建立的平面直角坐标系中,网球场的坐标为(3,2),请你在图中画出这个平面直角坐标系。(2)根据(1)中建立的平面直角坐标系,指出其它景点和设施的坐标。9、如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(7,1),C(4,5).(1)如果将ABC向上平移1个单位长度,再向右平移2个单位长度,得到A1B1C1则A1的坐标为 ;B1的坐标为 ; O2-4xyACB(2)求线段BC扫过的面积 .10、在直角坐标系中,A(-4,0),B(2,0),点C在y轴正半轴上,且SABC = 18(1)求点C的坐标;O2-4xyACB(2)是否存在位于坐标轴上的点P,SACP = SABC若存在,请求出P点坐标,若不存在,说明理由拓展题:如图, A点坐标为(2, 0), B点坐标为(0, 3).(1)作图, 将ABO沿x轴正方向平移4个单位, 得到DEF, 延长ED交y轴于C点, 过O点作OGCE, 垂足为G.(2) 在(1)的条件下, 求证: COGEDF. (3)求运动过程中线段AB扫过的图形的面积。
展开阅读全文