《液压与气压传动》课程试题库及参考答案.doc

上传人:小** 文档编号:13274137 上传时间:2020-06-11 格式:DOC 页数:36 大小:3.68MB
返回 下载 相关 举报
《液压与气压传动》课程试题库及参考答案.doc_第1页
第1页 / 共36页
《液压与气压传动》课程试题库及参考答案.doc_第2页
第2页 / 共36页
《液压与气压传动》课程试题库及参考答案.doc_第3页
第3页 / 共36页
点击查看更多>>
资源描述
液压与气压传动课程试题库 及参考答案一、填空题1. 液压系统中的压力取决于( ),执行元件的运动速度取决于( ) 。 ( 负载 ;流量)2. 液压传动装置由( )、( )、( )和( )四部分组成,其中( )和( )为能量转换装置。 (动力元件、执行元件、控制元件、辅助元件;动力元件、执行元件)3. 液体在管道中存在两种流动状态,( )时粘性力起主导作用,( )时惯性力起主导作用,液体的流动状态可用( )来判断。 (层流;紊流;雷诺数) 4. 在研究流动液体时,把假设既( )又( )的液体称为理想流体。 (无粘性;不可压缩)5. 由于流体具有( ),液流在管道中流动需要损耗一部分能量,它由( ) 损失和( ) 损失两部分组成。 (粘性;沿程压力;局部压力) 6. 液流流经薄壁小孔的流量与( ) 的一次方成正比,与( ) 的1/2次方成正比。通过小孔的流量对( )不敏感,因此薄壁小孔常用作可调节流阀。 (小孔通流面积;压力差;温度) 7. 通过固定平行平板缝隙的流量与( )一次方成正比,与( )的三次方成正比,这说明液压元件内的( )的大小对其泄漏量的影响非常大 。 (压力差;缝隙值;间隙) 8. 变量泵是指( )可以改变的液压泵,常见的变量泵有( )、( )、( )其中 ( )和( )是通过改变转子和定子的偏心距来实现变量,( ) 是通过改变斜盘倾角来实现变量。 (排量;单作用叶片泵、径向柱塞泵、轴向柱塞泵;单作用叶片泵、径向柱塞泵;轴向柱塞泵)9. 液压泵的实际流量比理论流量( );而液压马达实际流量比理论流量( ) 。 (大;小) 10. 斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为( 与 )、( 与 ) 、( 与 )。 (柱塞与缸体、缸体与配油盘、滑履与斜盘)11. 20号液压油在40时,其运动粘度的平均值约为( )cSt。(20 cSt)12. 相对压力又称( ),它是( )与( )之差。真空度是( )。(表压力;绝对压力;大气压力;大气压力与绝对压力之差)13. 流体在作恒定流动时,流场中任意一点处的( )、( )、( )都不随时间发生变化。(压力;速度;密度)14. 流体流动时,有( )和( )两种状态之分,我们把( )作为判断流动状态的标准,对于光滑的圆型金属管道,其临界值大致为( )。(层流;紊流;雷诺数;2320)15. 液压泵是靠( )的变化来进行工作的,所以又称液压泵为( )式泵。(密闭容积;容积式泵)16. 液压泵按结构特点一般可分为:( )、( )、( )三类泵。(齿轮泵;叶片泵;柱塞泵)17. CB32齿轮泵为了减小侧向泄漏,采用( )式结构。外放O型圈的卸压片放在( )侧,目的是( )。齿轮泵的吸油口( )压油口,目的是( )。(浮动轴套;吸油侧;保持浮动轴套受力平衡;大于;径向不平衡力)18. 为了保证齿轮泵的连续地可靠供油,要求其齿轮的啮合系数必须( ),这必然产生( ),为了克服这一现象,在齿轮泵中开了( )。(大于1;困油现象;卸荷槽)19. 叶片泵一般分为:( )和( )两种。(单作用;双作用)20. 柱塞泵一般分为:( )和( )柱塞泵。(径向柱塞泵;轴向)21. SCY141B柱塞泵是( )向柱塞泵。(轴向柱塞泵)22. SCY141B柱塞泵的柱塞数目采用( )数,一般为( )个,目的是:( )。(奇数;7,9个;减小流量脉动)23. 液压缸差动联接是将( )活塞杆液压缸的两腔( )的联接方式。当要求快进速度为工进速度的2倍时,活塞杆径d和液压缸径D的关系约为(d = D)。(单活塞液压缸;同时接入压力油;0.7)24. 工程机械上的换向阀多采用手动换向方式,它分为( )式和( )式。(定位式;复位式)25. 调速阀是由( )阀和( )阀( )联组成的。( )阀的进出口的压力差是由( )阀保证而基本不变化一的,使其流量不受负载变化的影响。一般情况下,对于调速阀其( )必须大于一定值(5105Pa或10105Pa),才能正常工作。(减压阀;节流阀;串;节流阀;减压阀;进出口)26. 外啮合齿轮泵的排量与( ) 的平方成正比,与的( ) 一次方成正比。因此,在齿轮节圆直径一定时,增大( ),减少( )可以增大泵的排量。 (模数、齿数;模数 齿数 )27. 外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是( )腔,位于轮齿逐渐进入啮合的一侧是( ) 腔。 (吸油;压油) 28. 为了消除齿轮泵的困油现象,通常在两侧盖板上开 ( ) ,使闭死容积由大变少时与( ) 腔相通,闭死容积由小变大时与 ( )腔相通。 ( 卸荷槽;压油;吸油) 29. 齿轮泵产生泄漏的间隙为( )间隙和( )间隙,此外还存在( ) 间隙,其中( )泄漏占总泄漏量的80%85%。 (端面、径向;啮合;端面) 30. 双作用叶片泵的定子曲线由两段( )、两段( )及四段( )组成,吸、压油窗口位于( )段。 (大半径圆弧 、小半径圆弧、 过渡曲线;过渡曲线) 31. 调节限压式变量叶片泵的压力调节螺钉,可以改变泵的压力流量特性曲线上( )的大小,调节最大流量调节螺钉,可以改变( ) 。 (拐点压力;泵的最大流量) 32. 溢流阀的进口压力随流量变化而波动的性能称为( ),性能的好坏用( )或( )、( )评价。显然(pspk)、(pspB)小好, nk和nb大好。 (压力流量特性;调压偏差;开启压力比、闭合压力比) 33. 溢流阀为( )压力控制,阀口常( ),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为( )压力控制,阀口常( ),先导阀弹簧腔的泄漏油必须( )。 (进口;闭 ;出口;开; 单独引回油箱)34. 调速阀是由( )和节流阀( ) 而成,旁通型调速阀是由( )和节流阀( )而成。 (定差减压阀,串联;差压式溢流阀,并联)35. 为了便于检修,蓄能器与管路之间应安装( ),为了防止液压泵停车或泄载时蓄能器内的压力油倒流,蓄能器与液压泵之间应安装 ( )。 (截止阀;单向阀) 36. 选用过滤器应考虑( )、( )、( )和其它功能,它在系统中可安装在( )、( )、( )和单独的过滤系统中。 (过滤精度、通流能力、机械强度;泵的吸油口、泵的压油口、系统的回油路上 )37. 两个液压马达主轴刚性连接在一起组成双速换接回路,两马达串联时,其转速为( );两马达并联时,其转速为( ),而输出转矩( )。串联和并联两种情况下回路的输出功率( ) 。 (高速 低速 增加 相同) 38. 在变量泵变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将 ( ) 调至最大,用( ) 调速;在高速段,( )为最大,用( )调速。 (马达排量,变量泵;泵排量,变量马达)39. 限压式变量泵和调速阀的调速回路,泵的流量与液压缸所需流量 ( ),泵的工作压力( );而差压式变量泵和节流阀的调速回路,泵输出流量与负载流量( ),泵的工作压力等于( ) 加节流阀前后压力差,故回路效率高。 (自动相适应,不变;相适应,负载压力) 二、判断题1. 液压缸活塞运动速度只取决于输入流量的大小,与压力无关。 () 2. 液体流动时,其流量连续性方程是能量守恒定律在流体力学中的一种表达形式。 () 3. 理想流体伯努力方程的物理意义是:在管内作稳定流动的理想流体,在任一截面上的压力能、势能和动能可以互相转换,但其总和不变。 ()4. 雷诺数是判断层流和紊流的判据。 ()5. 薄壁小孔因其通流量与油液的粘度无关,即对油温的变化不敏感,因此,常用作调节流量的节流器。 ()6. 流经缝隙的流量随缝隙值的增加而成倍增加。 ()7. 流量可改变的液压泵称为变量泵。 ()8. 定量泵是指输出流量不随泵的输出压力改变的泵。 ()9. 当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。 () 10. 配流轴式径向柱塞泵的排量q与定子相对转子的偏心成正比,改变偏心即可改变排量。 () 11. 双作用叶片泵因两个吸油窗口、两个压油窗口是对称布置,因此作用在转子和定子上的液压径向力平衡,轴承承受径向力小、寿命长。 () 12. “流体一定从压力高处流向压力低处。” ()13. “水力半径大,意谓着流体与管壁接触少,阻力小,通流能力强。” ()14. “设:通过同心环状缝隙的泄漏量为Q,则在偏心时泄漏量要增加,并且在完全偏心时泄漏量达到最大,为2.5Q。” ()15. “将液压缸的两腔同时接压力油的联接方式,称为差动联接。” ()16. “在圆柱形的表面间隙中,常常在其配合表面上开几个环形小槽,它能克服因零件精度不高而引起的径向不平衡力,但会使泄漏量增大。” ()17. 弹簧对中式电液换向阀的先导阀的中位机能一定是“Y”型。 ()18. 判断“旁路节流调速系统的效率一般比进、回油节流调速系统的效率高。” ()19. 双作用叶片泵的叶片是前倾放置的而单作用叶片泵的叶片是后倾放置的。 ()20. 双作用叶片泵的转子叶片槽根部全部通压力油是为了保证叶片紧贴定子内环。 ()21. 液压泵产生困油现象的充分且必要的条件是:存在闭死容积且容积大小发生变化。 ()22. 齿轮泵多采用变位齿轮是为了减小齿轮重合度,消除困油现象。 ()23. 液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以用来做马达使用。 ()24. 因存在泄漏,因此输入液压马达的实际流量大于其理论流量,而液压泵的实际输出流量小于其理论流量。()25. 双活塞杆液压缸又称为双作用液压缸,单活塞杆液压缸又称为单作用液压缸。()26. 滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区。 ()27. 节流阀和调速阀都是用来调节流量及稳定流量的流量控制阀。 ()28. 单向阀可以用来作背压阀。 ()29. 同一规格的电磁换向阀机能不同,可靠换向的最大压力和最大流量不同。 ()30. 因电磁吸力有限,对液动力较大的大流量换向阀则应选用液动换向阀或电液换向阀。 ()31. 串联了定值减压阀的支路,始终能获得低于系统压力调定值的稳定的工作压力。 ()32. 增速缸和增压缸都是柱塞缸与活塞缸组成的复合形式的执行元件。 ()33. 变量泵容积调速回路的速度刚性受负载变化影响的原因与定量泵节流调速回路有根本的不同,负载转矩增大泵和马达的泄漏增加,致使马达转速下降。 ()34. 采用调速阀的定量泵节流调速回路,无论负载如何变化始终能保证执行元件运动速度稳定。 ()35. 旁通型调速阀(溢流节流阀)只能安装在执行元件的进油路上,而调速阀还可安装在执行元件的回油路和旁油路上。 ()36. 油箱在液压系统中的功用是储存液压系统所需的足够油液。 ()37. 在变量泵变量马达闭式回路中,辅助泵的功用在于补充泵和马达的泄漏。 ()38. 因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中。 ()39. 同步运动分速度同步和位置同步,位置同步必定速度同步;而速度同步未必位置同步。 ()40. 压力控制的顺序动作回路中,顺序阀和压力继电器的调定压力应为执行元件前一动作的最高压力。 ()41. 为限制斜盘式轴向柱塞泵的柱塞所受的液压侧向力不致过大,斜盘的最大倾角max一般小于1820。 ()42. 当液流通过滑阀和锥阀时,液流作用在阀芯上的液动力都是力图使阀口关闭的。 ()43. 流体在管道中作稳定流动时,同一时间内流过管道每一截面的质量相等。 ()三、名词解释1 帕斯卡原理(静压传递原理) (在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。)2 系统压力 (系统中液压泵的排油压力。) 3 运动粘度 (动力粘度和该液体密度之比值。)4 液动力 (流动液体作用在使其流速发生变化的固体壁面上的力。)5 层流 (粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。)6 紊流 (惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。)7 沿程压力损失 (液体在管中流动时因粘性摩擦而产生的损失。)8 局部压力损失 (液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9 液压卡紧现象 (当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。)10. 液压冲击 (在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。)11. 气穴现象;气蚀 (在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。这种因空穴产生的腐蚀称为气蚀。)12. 排量 (液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。)13. 自吸泵 (液压泵的吸油腔容积能自动增大的泵。) 14. 变量泵 (排量可以改变的液压泵。)15. 恒功率变量泵 (液压泵的出口压力p与输出流量q的乘积近似为常数的变量泵。)16. 困油现象 (液压泵工作时,在吸、压油腔之间形成一个闭死容积,该容积的大小随着传动轴的旋转发生变化,导致压力冲击和气蚀的现象称为困油现象。)17. 差动连接 (单活塞杆液压缸的左、右两腔同时通压力油的连接方式称为差动连接。)18. 往返速比 (单活塞杆液压缸小腔进油、大腔回油时活塞的运动速度v2与大腔进油、小腔回油时活塞的运动速度v1的比值。)19. 滑阀的中位机能 (三位滑阀在中位时各油口的连通方式,它体现了换向阀的控制机能。)20. 溢流阀的压力流量特性 (在溢流阀调压弹簧的预压缩量调定以后,阀口开启后溢流阀的进口压力随溢流量的变化而波动的性能称为压力流量特性或启闭特性。)21. 节流阀的刚性 (节流阀开口面积A一定时,节流阀前后压力差p的变化量与流经阀的流量变化量之比为节流阀的刚性T:。)22. 节流调速回路 (液压系统采用定量泵供油,用流量控制阀改变输入执行元件的流量实现调速的回路称为节流调速回路。)23. 容积调速回路 (液压系统采用变量泵供油,通过改变泵的排量来改变输入执行元件的流量,从而实现调速的回路称为容积调速回路。)五、分析题 1. 如图所示定量泵输出流量为恒定值qp ,如在泵的出口接一节流阀,并将阀的开口调节的小一些,试分析回路中活塞运动的速度v和流过截面P,A,B三点流量应满足什么样的关系(活塞两腔的面积为A1和A2,所有管道的直径d相同)。解:图示系统为定量泵,表示输出流量qP不变。根据连续性方程,当阀的开口开小一些,通过阀口的流速增加,但通过节流阀的流量并不发生改变,qA= qp ,因此该系统不能调节活塞运动速度v,如果要实现调速就须在节流阀的进口并联一溢流阀,实现泵的流量分流。连续性方程只适合于同一管道,活塞将液压缸分成两腔,因此求qB不能直接使用连续性方程。根据连续性方程,活塞运动速度v = qA/A1,qB = qA/A1=(A2 / A1)qP 2. 如图所示节流阀调速系统中,节流阀为薄壁小孔,流量系数C=0.67,油的密度=900kg/ cm3,先导式溢流阀调定压力py=12105Pa,泵流量q=20l/min,活塞面积A1=30cm2,载荷=2400N。试分析节流阀开口(面积为AT)在从全开到逐渐调小过程中,活塞运动速度如何变化及溢流阀的工作状态。 解:节流阀开口面积有一临界值ATo。当ATATo时,虽然节流开口调小,但活塞运动速度保持不变,溢流阀阀口关闭起安全阀作用;当AT2,缸的负载为F。如果分别组成进油节流调速和回油节流调速回路,试分析: 1) 进油、回油节流调速哪个回路能使液压缸获得更低的最低运动速度。2)在判断哪个回路能获得最低的运动速度时,应将下述哪些参数保持相同,方能进行比较。 解:1)进油节流调速系统活塞运动速度v1= qmin/A1; 出口节流调速系统活塞运动速度 v2= qmin/A2 因12,故进油节流调速可获得最低的最低速度。2)节流阀的最小稳定流量是指某一定压差下(23105Pa),节流阀在最小允许开度 ATmin时能正常工作的最小流量qmin。因此在比较哪个回路能使液压缸有较低的运动速度时,就应保持节流阀最小开口量ATmin 和两端压差p相同的条件。设进油节流调速回路的泵压力为pp1,节流阀压差为p1则: 设出口调速回路液压缸大腔压力(泵压力)为pp2 ,节流阀压差为p2 ,则: 由最小稳定流量qmin相等的定义可知:p1=p2 即: 为使两个回路分别获得缸最低运动速度,两个泵的调定压力 pp1、 pp2 是不相等的。 4. 在图示的回路中,旁通型调速阀(溢流节流阀)装在液压缸的回油路上,通过分析其调速性能判断下面哪些结论是正确的。(A)缸的运动速度不受负载变化的影响,调速性能较好;(B)溢流节流阀相当于一个普通节流阀,只起回油路节流调速的作用,缸的运动速度受负载变化的影响;(C)溢流节流阀两端压差很小,液压缸回油腔背压很小,不能进行调速。 解:只有C正确,当溢流节流阀装在回油路上,节流阀出口压力为零,差压式溢流阀有弹簧的一腔油液压力也为零。当液压缸回油进入溢流节流阀的无弹簧腔时,只要克服软弹簧的作用力,就能使溢流口开度最大。这样,油液基本上不经节流阀而由溢流口直接回油箱,溢流节流阀两端压差很小,在液压缸回油腔建立不起背压,无法对液压缸实现调速。 5. 如图所示的回路为带补油装置的液压马达制动回路,说明图中三个溢流阀和单向阀的作用。 解:液压马达在工作时,溢流阀5起安全作用。制动时换向阀切换到中位,液压马达靠惯性还要继续旋转,故产生液压冲击,溢流阀1,2分别用来限制液压马达反转和正转时产生的最大冲击压力,起制动缓冲作用。另一方面,由于液压马达制动过程中有泄漏,为避免马达在换向制动过程中产生吸油腔吸空现象,用单向阀3和4从油箱向回路补油。 6. 如图所示是利用先导式溢流阀进行卸荷的回路。溢流阀调定压力 py30105Pa。要求考虑阀芯阻尼孔的压力损失,回答下列问题:1) 在溢流阀开启或关闭时,控制油路E,F段与泵出口处B点的油路是否始终是连通的?2) 在电磁铁DT断电时,若泵的工作压力 pB30105Pa, B点和E点压力哪个压力大?若泵的工作压力pB15105Pa,B点和E点哪个压力大?3)在电磁铁DT吸合时,泵的流量是如何流到油箱中去的? 解:1) 在溢流阀开启或关闭时,控制油路E,F段与泵出口处B点的油路始终得保持连通2)当泵的工作压力pB30105Pa时,先导阀打开,油流通过阻尼孔流出,这时在溢流阀主阀芯的两端产生压降,使主阀芯打开进行溢流,先导阀入口处的压力即为远程控制口E点的压力,故pB pE;当泵的工作压力pB15105Pa 时,先导阀关闭,阻尼小孔内无油液流动,pB pE。 3)二位二通阀的开启或关闭,对控制油液是否通过阻尼孔(即控制主阀芯的启闭)有关,但这部分的流量很小,溢流量主要是通过CD油管流回油箱。 7. 图(a),(b),(c)所示的三个调压回路是否都能进行三级调压(压力分别为60105Pa、40105Pa、10105Pa)?三级调压阀压力调整值分别应取多少?使用的元件有何区别? 解:图(b)不能进行三级压力控制。三个调压阀选取的调压值无论如何交换,泵的最大压力均由最小的调定压力所决定,p10105Pa。图(a)的压力阀调定值必须满足pA60105Pa,pB40105Pa,pC10105Pa。如果将上述调定值进行交换,就无法得到三级压力控制。图(a)所用的元件中,a1、a2必须使用先导型溢流阀,以便远程控制。a3可用远程调压阀(直动型)。图(c)的压力阀调定值必须满足pA60105Pa ,而pB、pC是并联的阀,互相不影响,故允许任选。设pB40105Pa ,pC10105Pa,阀A必须用先导式溢流阀,而B、C可用远程调压阀。两者相比,图(c)比图(a)的方案要好。 8. 如图所示的系统中,两个溢流阀串联,若已知每个溢流阀单独使用时的调整压力,py1=20105Pa,py2=40105Pa。溢流阀卸载的压力损失忽略不计,试判断在二位二通电磁阀不同工况下,A点和B点的压力各为多少。 解:电磁铁 1DT 2DT pA=0 pB=0 1DT+ 2DT pA=0 pB=20105Pa 1DT 2DT+ pA=40105Pa pB=40105Pa 1DT+ 2DT+ pA=40105Pa pB=60105Pa 当两个电磁铁均吸合时,图示两个溢流阀串联,A点最高压力由py2决定,pA40105Pa。由于pA压力作用在溢流阀1的先导阀上(成为背压),如果要使溢流阀1的先导阀保持开启工况,压力油除了克服调压弹簧所产生的调定压力py120105Pa以外,尚需克服背压力pA40105Pa的作用,故泵的最大工作压力:pB py1+ pA(20+40)105=60105Pa 。9. 如图所示的系统中,主工作缸负载阻力F=2000N,夹紧缸II在运动时负载阻力很小可忽略不计。两缸大小相同,大腔面积 A1=20cm2,小腔有效面积A2=10cm2,溢流阀调整值py =30105Pa,减压阀调整值pj=15105Pa。试分析: 1) 当夹紧缸II运动时:pa和pb分别为多少? 2) 当夹紧缸II夹紧工件时:pa和pb分别为多少? 3)夹紧缸II最高承受的压力pmax为多少? 解:1)2)由于节流阀安装在夹紧缸的回油路上,属回油节流调速。因此无论夹紧缸在运动时或夹紧工件时,减压阀均处于工作状态,pA=pj=15105Pa。溢流阀始终处于溢流工况,pB= py=30105Pa。3)当夹紧缸负载阻力FII=0时,在夹紧缸的回油腔压力处于最高值: 10. 图示为大吨位液压机常用的一种泄压回路。其特点为液压缸下腔油路上装置一个由上腔压力控制的顺序阀(卸荷阀)。活塞向下工作行程结束时,换向阀可直接切换到右位使活塞回程,这样就不必使换向阀在中间位置泄压后再切换。分析该回路工作原理后说明: 1) 换向阀1的中位有什么作用? 2) 液控单向阀(充液阀)4的功能是什么? 3) 开启液控单向阀的控制压力pk是否一定要比顺序阀调定压力px大? 解:工作原理:活塞工作行程结束后换向阀1切换至右位,高压腔的压力通过单向节流阀2和换向阀1与油箱接通进行泄压。当缸上腔压力高于顺序阀3的调定压力(一般为2040105Pa)时,阀处于开启状态,泵的供油通过阀3排回油箱。只有当上腔逐渐泄压到低于顺序阀3调定压力(一般为)时,顺序阀关闭,缸下腔才升压并打开液控单向阀使活塞回程。 1) 换向阀1的中位作用:当活塞向下工作行程结束进行换向时,在阀的中位并不停留,只有当活塞上升到终点时换向阀才切换到中位,所用的K型中位机能可以防止滑块下滑,并使泵卸载。 2) 由于液压机在缸两腔的有效面积相差很大,活塞向上回程时上腔的排油量很大,管路上的节流阀将会造成很大的回油背压,因此设置了充液阀4。回程时上腔的油可通过充液阀4排出去。当活塞利用重力快速下行时,若缸上腔油压出现真空,阀4将自行打开,充液箱的油直接被吸入缸上腔,起着充液(补油)的作用。 3) 图示的回路中在换向时要求上腔先泄压,直至压力降低到顺序阀3的调定压力px时,顺序阀断开,缸下腔的压力才开始升压。在液控顺序阀3断开瞬间,液控单向阀4反向进口承受的压力为px (2040105Pa),其反向出口和油箱相通,无背压,因此开启液控单向阀的控制压力只需pk=(0.30.5)px即可。 11. 图示的液压回路,原设计要求是夹紧缸I把工件夹紧后,进给缸II才能动作;并且要求夹紧缸I的速度能够调节。实际试车后发现该方案达不到预想目的,试分析其原因并提出改进的方法。解:图(a)的方案中,要通过节流阀对缸I进行速度控制,溢流阀必然处于溢流的工作状况。这时泵的压力为溢流阀调定值,pB= py。B点压力对工件是否夹紧无关,该点压力总是大于顺序阀的调定值px,故进给缸II只能先动作或和缸I同时动作,因此无法达到预想的目的。图(b)是改进后的回路,它是把图(a)中顺序阀内控方式改为外控方式,控制压力由节流阀出口A点引出。这样当缸I在运动过程中, A点的压力取决于缸I负载。当缸I夹紧工件停止运动后,A点压力升高到py,使外控顺序阀接通,实现所要求的顺序动作。图中单向阀起保压作用,以防止缸II在工作压力瞬间突然降低引起工件自行松开的事故。 12. 图(a),(b)所示为液动阀换向回路。在主油路中接一个节流阀,当活塞运动到行程终点时切换控制油路的电磁阀3,然后利用节流阀的进油口压差来切换液动阀4,实现液压缸的换向。试判断图示两种方案是否都能正常工作? 解:在(a)图方案中,溢流阀2装在节流阀1的后面,节流阀始终有油液流过。活塞在行程终了后,溢流阀处于溢流状态,节流阀出口处的压力和流量为定值,控制液动阀换向的压力差不变。因此,(a)图的方案可以正常工作。在(b)图方案中,压力推动活塞到达终点后,泵输出的油液全部经溢流阀2回油箱,此时不再有油液流过节流阀,节流阀两端压力相等。因此,建立不起压力差使液动阀动作,此方案不能正常工作。 13. 在图示的夹紧系统中,已知定位压力要求为10105Pa,夹紧力要求为3104,夹紧缸无杆腔面积1=100cm,试回答下列问题: 1)A,B,C,D各件名称,作用及其调整压力; 2)系统的工作过程。 解:1) A为内控外泄顺序阀,作用是保证先定位、后夹紧的顺序动作,调整压力略大于10105Pa ; B为卸荷阀,作用是定位、夹紧动作完成后,使大流量泵卸载,调整压力略大于10105Pa ; C为压力继电器,作用是当系统压力达到夹紧压力时,发讯控制其他元件动作,调整压力为30105Pa D 为溢流阀,作用是夹紧后,起稳压作用,调整压力为30105Pa 。 2)系统的工作过程:系统的工作循环是定位夹紧拔销松开。其动作过程:当1DT得电、换向阀左位工作时,双泵供油,定位缸动作,实现定位;当定位动作结束后,压力升高,升至顺序阀A的调整压力值,A阀打开,夹紧缸运动;当夹紧压力达到所需要夹紧力时,B阀使大流量泵卸载,小流量泵继续供油,补偿泄漏,以保持系统压力,夹紧力由溢流阀D控制,同时,压力继电器C发讯,控制其他相关元件动作。 14. 图示系统为一个二级减压回路,活塞在运动时需克服摩擦阻力=1500,活塞面积A=15cm2,溢流阀调整压力py =45105Pa,两个减压阀的调定压力分别为pj1=20105Pa和pj2=35105Pa,管道和换向阀的压力损失不计。试分析: 1) 当DT吸合时活塞处于运动过程中,pB、pA、pC三点的压力各为多少?2) 当DT吸合时活塞夹紧工件,这时pB、pA、pC三点的压力各为多少?3) 如在调整减压阀压力时,改取 pj1=35105Pa和pj2=20105Pa,该系统是否能使工件得到两种不同夹紧力? 解:1)DT吸合,活塞运动时: 因pLpj,减压阀阀口处于最大位置,不起减压作用,pApCpL10105Pa,pB10105pj Pa,pj为油液通过减压阀时产生的压力损失。 2)DT吸合,活塞夹紧工件:溢流阀必然开启溢流,pBpy45105Pa。对于减压阀1,由于pL的作用使其先导阀开启,主阀芯在两端压力差的作用下,减压开口逐渐关小,直至完全闭合;对于减压阀2,由于pL的作用使其主阀口关小处于平衡状态,允许(12)l/min的流量经先导阀回油箱,以维持出口处压力为定值,pCpApj235105Pa。3)由以上分析可知,只要DT一吸合,缸位于夹紧工况时,夹紧缸的压力将由并联的减压阀中调定值较高的那一减压阀决定。因此,为了获得两种不同夹紧力,必须使pj1pj2。如果取pj1=35105Pa,则无法获得夹紧缸压力 pj=20105Pa。 15. 在如图所示系统中,两液压缸的活塞面积相同,A=20cm2,缸I的阻力负载F=8000N,缸II的阻力负载F=4000N,溢流阀的调整压力为py =45105Pa。1)在减压阀不同调定压力时(pj1 =10105Pa 、pj2 =20105Pa、pj3 =40105Pa)两缸的动作顺序是怎样的?2)在上面三个不同的减压阀调整值中,哪个调整值会使缸II运动速度最快?解:1)启动缸II所需的压力:pj1 =10105Pa p2 ,减压阀口全开、不起减压作用,若不计压力损失,pB p2 =20105Pa,该压力不能克服缸I负载,故缸II单独右移,待缸II运动到端点后,压力上升pA =pj =40105Pa, pB =py =45105Pa,压力油才使缸I向右运动。2)当pj3 =40105Pa 时,减压阀口全开、不起减压作用。泵的压力取决于负载,pB = p2 =20105Pa 。因为溢流阀关闭,泵的流量全部进入缸II,故缸II运动速度最快,vII=q/A 。16. 如图所示采用蓄能器的压力机系统的两种方案,其区别在于蓄能器和压力继电器的安装位置不同。试分析它们的工作原理,并指出图(a)和(b)的系统分别具有哪些功能? 解:图(a)方案,当活塞在接触工件慢进和保压时,或者活塞上行到终点时,泵一部分油液进入蓄能器。当蓄能器压力达到一定值,压力继电器发讯使泵卸载,这时,蓄能器的压力油对压力机保压并补充泄漏。当换向阀切换时,泵和蓄能器同时向缸供油,使活塞快速运动。蓄能器在活塞向下向上运动中,始终处于压力状态。由于蓄能器布置在泵和换向阀之间,换向时兼有防止液压冲击的功能。图(b)方案,活塞上行时蓄能器与油箱相通,故蓄能器内的压力为零。当活塞下行接触工件时泵的压力上升,泵的油液进入蓄能器。当蓄能器的压力上升到调定压力时,压力继电器发讯使泵卸载,这时缸由蓄能器保压。该方案适用于加压和保压时间较长的场合。与(a)方案相比,它没有泵和蓄能器同时供油、满足活塞快速运动的要求及当换向阀突然切换时、蓄能器吸收液压冲击的功能。 17. 在图示的系统中,两溢流阀的调定压力分别为60105Pa、20105Pa。1)当py160105Pa,py220105Pa ,DT吸合和断电时泵最大工作压力分别为多少?2)当py120105Pa,py260105Pa,DT吸合和断电时泵最大工作压力分别为多少? 解:1)DT失电时活塞向右运动,远程调压阀1进出口压力相等,由于作用在阀芯两端的压差为零,阀1始终处于关闭状态不起作用,泵的压力由py2决定:ppmaxpy220105Pa;DT吸合时活塞向左运动,缸的大腔压力为零,泵的最大工作压力将由py1、py2中较小的值决定:ppmaxpy220105Pa。2)同上一样,DT失电时活塞向右运动,远程调压阀1不起作用,泵的压力由py2决定:ppmaxpy260105Pa;DT吸合时活塞向左运动,泵的最大工作压力将由py1、py2中较小的值决定:ppmaxpy120105Pa。18. 下列供气系统有何错误?应怎样正确布置?解:气动三大件是气动系统使用压缩空气质量的最后保证,其顺序分水滤气器、减压阀、油雾器。图a)用于气阀和气缸的系统,三大件的顺序有错,油雾器应放在减压阀、压力表之后;图b)用于逻辑元件系统,不应设置油雾器,因润滑油会影响逻辑元件正常工作,另外减压阀图形符号缺少控制油路。19. 有人设计一双手控制气缸往复运动回路如图所示。问此回路能否工作?为什么?如不能工作需要更换哪个阀? 解:此回路不能工作,因为二位二通阀不能反向排气,即二位四通换向阀左侧加压后,无论二位二通阀是否复位,其左侧控制压力都不能泄压,这样弹簧就不能将它换至右位,气缸也就不能缩回; 将两个二位二通阀换为二位三通阀,在松开其按钮时使二位四通换向阀左侧处于排气状态,回路即可实现往复运动。 六、问答题 1. 是门元件与非门元件结构相似,是门元件中阀芯底部有一弹簧,非门元件中却没有,说明是门元件中弹簧的作用,去掉该弹簧是门元件能否正常工作,为什么? 答:当“是门”元件正常工作时,气流由气源流向输出口S,若由于某种原因使气源压力p为零而输出仍保持压力,则输出口S气流会回流到气源口,输出口S的污秽会进入是门元件甚至是门元件前的其它控制阀。这种情况应该避免。故采用弹簧使是门元件阀芯复位,防止输出口S气流回流。此中情况下非门元件输出口S回流气流正好使阀芯关断,故不需弹簧。 2. 简述压缩空气净化设备及其主要作用。 答:压缩空气净化设备一般包括后冷却器、油水分离器、贮气罐、干燥器。后冷却器安装在空气压缩机出口管道上,它将压缩空气中油雾和水汽达到饱和使其大部分凝结成滴而析出。油水分离器安装在后冷却器后的管道上,作用是分离压缩空气中所含的水分、油分等杂质,使压缩空气得到初步净化。贮气罐的主要作用是贮存一定数量的压缩空气,减少气源输出气流脉动,增加气流连续性,进一步分离压缩空气中的水分和油分。干燥器的作用是进一步除去压缩空气中含有的水分、油分、颗粒杂质等,使压缩空气干燥。 3. 试比较截止式气动逻辑元件和膜片式气动逻辑元件的特点。答:(1)在工作原理上:高压截止式逻辑元件的动作是依靠气压信号推动阀芯或通过膜片变形推动阀芯动作,改变气流的通路以实现一定的逻辑功能;高压膜片式逻辑元件由带阀口的气室和能够摆动的膜片构成,它通过膜片两侧造成压力差使膜片向一侧摆动,从而开关相应的阀口,使气流的流向、流路切换,以实现各种逻辑控制功能。(2)在性能上各有长处:高压截止式逻辑元件的阀芯是自由圆片或圆柱体,检查、维修、安装方便,行程短,流量大。高压膜片式逻辑元件结构简单,内部可动部件摩擦小,寿命长,密封性好。 4. 简述冲击气缸的工作过程及工作原理。答:它的工作过程可简单地分为三个阶段。第一段,气源由孔A供气,孔B排气,活塞上升并用密封垫封住喷嘴,气缸上腔成为密封的储气腔。第二段,气源改由孔A排气,孔B进气。由于上腔气压作用在喷嘴上面积较小,而下腔作用面积较大,可使上腔贮存很高的能量。第三段,上腔压力增大,下腔压力继续降低,上下腔压力比大于活塞与喷嘴面积比时,活塞离开喷嘴,上腔的气体迅速充入到活塞与中盖间的空间。活塞将以极大的加速度向下运动,气体的压力能转换为活塞的动能,利用这个能量对工件冲击做工,产生很大的冲击力。 5. 使用气动马达和气缸时应注意那些事项?答:气动马达在使用中必须得到良好的润滑。一般在整个气动系统回路中,在气动马达控制阀前设置油雾器,并按期补油,使油雾混入空气后进入气动马达,从而达到充分润滑。气缸在使用时应注意环境温度为-35+80;安装前应在1.5倍工作压力下进行试验,不应漏气;装配时所有工作表面应涂以润滑脂;安装的气源进口处必须设置油雾器,并在灰大的场合安装防尘罩;安装时应尽可能让活塞杆承受轴线上的拉力载荷;在行程中若载荷有变化,应该使用输出力充裕的气缸,并附设缓冲装置;多数情况下不使用满行程。 6. 简述气压传动系统对其工作介质压缩空气的主要要求。答:气动系统要求压缩空气具有一定的压力和足够的流量,具有一定的净化程度,所含杂质(油、水及灰尘等)粒径一般不超过以下数值:气缸、膜片式和截止式气动元件不大于50m,气动马达、硬配滑阀不大于25m,射流元件10m左右。 7. 液压传动中常用的液压泵分为哪些类型?答:1) 按液压泵输出的流量能否调节分类有定量泵和变量泵。定量泵:液压泵输出流量不能调节,即单位时间内输出的油液体积是一定的。 变量泵:液压泵输出流量可以调节,即根据系统的需要,泵输出不同的流量。 2)按液压泵的结构型式不同分类有齿轮泵(外啮合式、内啮合式)、 叶片泵(单作用式、双作用式)、柱塞泵(轴向式、径向式)螺杆泵。 8. 如果与液压泵吸油口相通的油箱是完全封闭的,不与大气相通,液压泵能否正常工作?答:液压泵是依靠密闭工作容积的变化,将机械能转化成压力能的泵,常称为容积式泵。液压泵在机构的作用下,密闭工作容积增大时,形成局部真空,具备了吸油条件;又由于油箱与大气相通,在大气压力作用下油箱里的油液被压入其内
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!