五自由度工业机器人结构

上传人:无*** 文档编号:132005805 上传时间:2022-08-07 格式:DOC 页数:42 大小:2.14MB
返回 下载 相关 举报
五自由度工业机器人结构_第1页
第1页 / 共42页
五自由度工业机器人结构_第2页
第2页 / 共42页
五自由度工业机器人结构_第3页
第3页 / 共42页
点击查看更多>>
资源描述
五自由度工业机器人构造设计1 绪论 工业机器人,一般指的是在工厂车间环境中,配合自动化生产的需要,替代人来完毕材料或零件的搬运、加工、装配等操作的一种机器人。国际原则化组织(ISO)在 对工业机器人所下的定义是“机器人是一种自动的、位置可控的、具有编程能力的多功能机械手,这种机械手具有几种轴,能借助于可编程序操作来解决多种材料、零件、工具和专用设备,以执行种种任务” 。 随着科学和技术的不断发展,在过去的几种世纪里,人类在许多方面都获得了重大的进展。机器人技术作为人类最伟大的发明之一,自20世纪60年代初问世以来,经历了短短的40年,已获得长足的进步。工业机器人在经历了诞生、成长、成熟期后,已成为制造业中必不可少的核心装备,并且工业机器人不仅在工厂里成了工人必不可少的伙伴,并且正在以惊人的速度向航空航天、军事、服务、娱乐等人类生活的各个领域渗入。据联合国经济委员会和国际机器人联合会去年有关世界机器人的报 告,仅新投入使用的机器人接近10万个,使世界目前使用的机器人总数超过75万。世界使用机器人最多的国家是日本,约38 .9万;另一方面为德国(9.1万)、美国 (9万)、意大利(3.9万)、韩国(3.8万)、法国(2.1万)、西班牙(1.3万)和英国(1.2 万),并且报告估计,全世界使用的机器人总数将超过100万。 国内的工业机器人发展的历史已有20近年,从“七五”科技攻关开始,正式列入国家筹划,在国家的组织和支持下,通过“七五”、“八五”科技攻关,不仅在机器人的基本理论和核心技术方面获得重大突破,并且在工业机器人整机方面,己经陆续掌握了喷漆、弧焊、点焊、装配和搬运等不同用途、典型的工业机器人整机技术,并成功的应用于生产,掌握了有关的应用工程知识。但总的看来,国内的工业机器人 技术及其工程应用的水平和国外的相比尚有一定的距离。国内目前大概有 4000台工业机器人,其中仅有1/5是国产的,其他的则是从40多种国外厂商进口的机器人。总之,多种各样机器人的浮现和应用是人类走向文明和发展的一种巨大进步和标志,在将来社会中,机器人的广泛应用和发展是一种必然的发展趋势。相信在不远的将来,机器人技术将一定可觉得人类带来更多的以便,为人类的文明和发展带来更大的机会。 1.1 工业机器人的发展过程及其应用 20世纪50年代是工业机器人的萌芽时期,1954年美国戴沃尔刊登了“通用反复 型机器人”的专利论文,第一次提出了“工业机器人”的概念。1958 年美国联合控制公司研制出第一台数控工业机器人原型。1959 年美国 UNIMATION 公司推出第一台工业机器人。美国是机器人的家乡。 20世纪60年代随着传感技术和工业自动化的发展,工业机器人进入发展期,机器人开始向合用化发展,并被用于电焊和喷涂作业。20世纪70年代随着计算机和人工智能的发展,机器人进入合用化时代。日本虽起步较晚,但结合国情,面向中小公司,采用了一系列鼓励使用机器人的措施。其机器人拥有量不久超过了美国,一举成为“机器人王国”。 20世纪80年代工业机器人进入普及时代,汽车、电子等行业开始大量使用工业机器人,推动了机器人产业的发展。工业机器人的应用满足了人们特性化的规定,产品的批量越来越大,品种越来越多,并且产品的一致性也大大提高,为商家占有了更多的市场份额,获得了更多的市场利润。20世纪90年代初期,工业机器人的生产与需求达到了一种高峰期。1990年世界上新装备工业机器人80943台,1991年装备了76443台,到1991年终世界上己有53万台工业机器人工作在各条战线上15。目前工业机器人重要应用于制造业中,特别是电器制造、汽车制造、塑料加工、金属加工以及金属制品业等。在日、美、西欧等某些工业发达的国家中,工业机器人得到越来越广泛的应用。随着生产的发展,机器人功能和性能的不断改善和提高,机器人的应用领域日益扩大,其应用范畴已不限于制造业,还用于农业、林业、交通运 输业、原子能工业、医疗、福利事业、海洋和太空的开发事业中。在工业领域广泛应用着工业机器人。国内科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具有某些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。一种典型的机器人系统由本体、关节伺服驱动系统、计算机控制系统、传感系统、通讯接口等几部分构成。一般多自由度串联机器人具有46个自由度,其中23个自由度决定了末端执行器在空间的位置,其他23个自由度决定了末端执行器在空间的姿态。本文设计的机器人具有三个自由度,也就是机器人的整个手臂部分,来决定了末端执行器在空间的位置。 1.2 工业机器人研究的现状与意义 机器人波及到机械、电子、控制、计算机、人工智能、传感器、通讯与网络等多种学科和领域,是多种高新技术发展成果的综合集成。因此它的发展与上述学科发展密切有关。机器人在制造业的应用范畴越来越广阔,其原则化、模块化、网络化和智能化的限度也越来越高,功能越来越强,并向着成套技术和装备的方向发展。机器人应用从老式制造业向非制造业转变,向以人为中心的个人化和微小型方向发展,并将服务于人类活动的各个领域。总趋势是从狭义的机器人概念向广义的机器人技术(RT) 概念转移;从工业机器人产业向解决工程应用方案业务的机器人技术产业发展。机器人技术(RT)的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势重要为:构造的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。 现代科学技术的迅速发展,特别是进入20世纪80年代以来,机器人技术的进步与其在各个领域的广泛应用,引起了各国专家学者的普遍关注。许多发达国家均把机器人技术的开发、研究列入国家高新技术发展筹划。世界各国普遍在高等院校为大学本科生及研究生开设了简介机器人技术的有关课程。为了培养机器人开发、设计、生产、维护方面的人才,国内诸多高校也为本科生和研究生开设了机器人学课程。 本课题为教师自拟课题。本文重要针对五自由度工业机器人进行构造设计。 1.3 国内外机器人研究现状 1.3.1 国外机器人研究现状 国外目前机器人研究的重点重要有如下几种方面78: (1) 机器人操作机,通过有限元分析、模态分析及仿真设计等现代设计措施的运用,机器人操作机己实现了优化设计。以德国 KUKA 公司为代表的机器人公司,将机器人并联平行四边形构造改为开链构造,拓展了机器人的工作范畴,加之轻质铝合金材料的应用大大提高了机器人的性能。 (2) 并联机器人:采用并联机构,运用机器人技术,实现高精度测量及加工,这是机器人技术向数控技术的拓展,为将来实现机器人和数控技术一体化奠定了基本。意大利COMAU公司,日本FANUC等公司已开发出了此类产品。 (3) 控制系统:控制系统的性能进一步提高,已由过去控制原则的6轴机器人发展到目前可以控制21轴甚至27轴机器人,并且实现了软件伺服和全数字控制。人机界面更加和谐,基于图形操作的界面也已问世。编程方式仍以示教编程为主,但在某些领域的离线编程已实现实用化。 (4) 传感系统:激光传感器、视觉传感器和力传感器在机器人系统中已得到成功应用,并实现了焊缝自动跟踪和自动化生产线上物体的自动定位以及精密装配作业等,大大提高了机器人的作业性能和对环境的适应性。日本 KAWASAKI, YASKAWA, FANUC和瑞典ABB、德国KUKA, REIS等公司皆推出了此类产品。 (5) 网络通信功能:日本 YASKAWA 和德国 KUKA 公司的最新机器人控制器已实现了与 Canbus、Profibus 总线及某些网络的联接,使机器人由过去的独立应用向网络 化应用迈进了一大步,也使机器人由过去的专用设备向原则化设备有了发展。 (6) 可靠性:由于微电子技术的迅速发展和大规模集成电路的应用,使机器人系统的可靠性有了很大提高。过去机器人系统的可靠性一般为几千小时,而目前已达到5万小时,几乎可以满足任何场合的需求。 1.3.2 国内机器人研究现状 随着科学技术和世界各国机器人技术的发展,国内在机器人科学研究、技术开发和应用工程等方面获得了可喜的进步。从20世纪80年代末到20世纪90年代,国家863筹划把机器人列为自动化领域的重要研究课题,系统地开展了机器人基本科学、核心技术与机器人元部件、先进机器人系统集成技术的研究及机器人在自动化工程上的应用。在工业机器人选型方面,拟定以开发点焊、弧焊、喷漆、装配、搬运等机器人为主。这是中国机器人事业从研制到应用迈出的重要一步。一批从事机器人研究、开发、应用的人才和队伍在实践中成长、壮大,一批以机器人为主业的产业化基地已经破土而出。 国内近几年机器人自动化生产线已经不断浮现,并给顾客带来明显效益912。随着国内工业公司自动化水平的不断提高,机器人自动化线的市场也会越来越大,并且逐渐成为自动化生产线的重要方式。国内机器人自动化生产线装备的市场刚刚起步,而国内装备制造业正处在由老式装备向先进制造装备转型的时期,这就给机器人自动化生产线研究开发者带来巨大商机。但是,无论从工业机器人的数量上还是技术上,我们都是比较落后的。而国内作为一种工业大国,不能寄但愿从其她国家得到真正的高技术,必须自主的发展国内的高技术,机器人作为高技术领域的一种重要分支,将成为21世纪各国争夺的经济技术制高点。如何在 21世纪加速国内机器人的发展,使国内早日进入机器人大国行列,已成为当务之急。由于目前国内机器人的基本数量太低,以工业机器人为例,到了国内机器人拥有量只能达到世界拥有量1.38%2%,这与国内作为21世纪前半叶世界重要制造国的规定差距太大,如果这种差距只能以进口机器人来弥补,其巨大损失不是可以用货币损失来计算的。可见,无论从资金方面考虑,还是从长远利益考虑,我们有必要自主地对机器人进行研究和开发。 但是由于国内机器人的科研与开发与国外尚有较大差距,虽然筹划开发的机器人基本上采用的是在国外基木成熟的技术,但国内各单位对这些技术的理解有相称部分还停留在文献上或局部技术上。因此我们应当从基本做起,有必要研制少数型号的机器人和开展一批基本技术研究作为机器人课题的重要研究与开发内容。 1.3.3 工业机器人运动学系统研究现状 运动学正问题的研究目前重要是运用齐次坐标变换矩阵措施将位置和姿态统一描述,该法思路清晰,但运算速度较慢,随着机器人机构自由度的增长对运动学逆问题的讨论带来诸多不便。运动学逆问题比正问题复杂的多,重要表目前逆解的存在性和唯一性,存在性决定机器人的操作空间,逆解一般来说非唯一。目前对具有特殊形状的机器人机构如球形手腕机器人机构,其逆解是封闭的,但并不唯一。对一般的机器人机构逆解必须使用数值计算措施,因而数值解的计算速度和精度受到人们的关注,同步机器人机构中常用的奇异状态(不可解状态)在数值解中如何避免也是讨论三维问题之一13 。 工业机器人运动学方程的计算过程需要解多元非线性方程组,数学上尚无完备的措施求其解析解,机构学研究者采用数值分析的措施,获得了一系列进展。但是多数或者算法不稳定,或者过度依赖初值,且计算量大,求解速度慢。工业机器人机构位置正解的神经网络解法也开始进行探讨。运用神经网络对于非线性映射的强大的逼近能力,采用 BP 网络,运用位置逆解成果作为训练样本,通过大量样本的训练学习,实现机器人从关节变量空间到工作变量空间的非线性映射,从而获得并联机器人运动学正解,避免了求位置正解时公式推导和编程计算等的繁杂性14。 运动学方程的建立与求解是一种机器人系统的核心技术,始终受到广泛的关注,但仍然是当今的一种研究热点,有着一定的发展空间。 1.3.4 工业机器人轨迹规划研究的现状与意义 机器人轨迹规划属于机器人底层规划,是在机械手的运动学的基本上,讨论在关节空间和笛卡尔空间中机器人运动过程中的轨迹规划和轨迹生成措施。所谓轨迹是指机械手在运动过程中的位移、速度和加速度。而轨迹规划是根据作业任务的规定,计算出预期的运动轨迹。一方面对机器人的任务、运动途径和轨迹进行描述。例如,顾客给出手部的目的位姿,规划所要完毕的任务是:拟定到该目的的途径点、持续时间、运动速度等轨迹参数,并在计算机的内部描述所规定的轨迹,即选择习惯给定及合理的软件数据构造。最后,对内部描述的轨迹,实时计算机器人运动的位移、速度和加 速度,生成运动轨迹。 轨迹规划既可在关节空间也可在直角空间进行,但是所规划的轨迹函数都必须连 续和平滑,使得操作臂的运动平稳。顾客根据作业给出的各个途径点后,途径规划的任务涉及: 解变换方程(运动学正解)、进行运动学反解和插值运算等;在关节空间进行规划时,大量工作是对关节变量的插值运算。因此,对于插值算法的研究是机器人 轨迹规划的一种重要方面15。 1.4 本文研究的意义及重要内容 我们所设计的五自由度工业机器人,可觉得进一步研究工业机器人的工作原理和工作过程奠定一定的基本。将其作为机器人学 、机器人技术基本及机电一体化系统设计课程及机械电子工程专业等机电结合的综合教学实验设备,不仅可以使学生在轻松快乐的氛围中充足理解有关课程的专业知识,并且可以激发学生的专业学习爱好,树立系统的工程概念,培养其独立开展科学研究的能力。因此,本机器人的研制成功,对机电一体化专业教学及科研有着十分重要的意义。 学习了机器人技术知识,查阅了大量的文献资料,对国内外机器人、重要是工业机器人的现状有了比较具体的理解。在此基本上,结合本人的设想,和设计工作中需要解决的任务,本文重要研究机器人总体构造进行设计,重要进行如下工作: 本体构造设计,本机器人手臂构造方案拟定后要运用AutoCAD和Pro/Engineer软件把其平面装配图及其立体图做出。 2 机器人本体构造方案的设计 2.1 机器人的工作规定重要设计参数如下自由度数目:5个机械机构形式:立式关节型作业半径:650mm负荷能力:2kg反复定位精度:+/-0.5mm驱动电机:步进电机最大重量: 40kg2.2 机器人机械设计的特点 2.2.1 机器人独特的构造特点 (1) 关节型工业机器人操作机可以简化成各连杆首尾相接、末端开放的一种开式连杆系。为实现规定的坐标运动,在大多数工作时间内,连杆系末端是无法加以支撑的,因而操作机的构造刚度差,并随连杆系在空间位姿的变化而变化。 (2) 在构成操作机的开式连杆系中,每根连杆都具有独立的驱动器,因而属于积极连杆系。这和一般的连杆系不同,在一般连杆系中,所有的连杆运动都出自同一驱动源,各连杆间的运动是互相制约的。由于操作机连杆的运动各自独立,不同连杆的运动之间没有依从关系,故而操作机的运动更为灵活。 (3) 连杆驱动扭矩的瞬态过程在时域中的变化是非常复杂的,且和执行件反馈信号有关。连杆的驱动属于伺服控制型,因而对机械传动系统的刚度、间隙和运动精度均有较高的规定。本文所用的三个关节驱动是步进电机驱动,属于开环控制型。 (4) 连杆系的受力状态、刚度条件和动态性能都是随位姿的变化而变化的,因此,极容易发生振动或浮现其他不稳定现象。 从以上特点可见,一种好的机器人设计应当使其机械系统的抓重自重比尽量大,构造的静动态刚度尽量好,并尽量提高系统的固有频率和改善系统的动态性能。人类的手臂是最优秀的操作机,它的性能是机器人设计追求的目的16。 2.2.2 与机器人有关的概念 如下是本文中波及到的某些与机器人技术有关的概念。 (1) 自由度(Degrees Of Freedom , DOF):工业机器人一般都为多关节的空间机构,其运动副一般有移动副和转动副两种。相应地,以转动副相连的关节称为转动关节。以移动副相连的关节称为移动关节。在这些关节中,单独驱动的关节称为积极关节。积极关节的数目称为机器人的自由度。本文设计的机器人是5-DOF机器人。 (2) 工作空间(Work Space):工作空间是指机器人臂杆的特定部位在一定条件下所能达到空间的位置集合。由于工作空间的形状和大小反映了机器人工作能力的大小,因而它对于机器人的应用是十分重要的。 (3) 机器人的分类,机器人分类措施有多种。 一方面,按机器人控制措施的不同,可分为点位控制型(PTP),持续轨迹控制型(CP): (a) 点位控制型(Point to Point Control):机器人受控运动方式为自一种点位目的向另一种点位目的移动,只在目的点上完毕操作。例如机器人在进行点焊时的轨迹控制。本文的机器人就属于PTP型。 (b) 持续轨迹控制型(Continuous Path Control):机器人各关节同步做受控运动,使机器人末端执行器按预期轨迹和速度运动,为此各关节控制系统需要获得驱动机的角位移和角速度信号,如机器人进行焊缝为曲线的弧焊作业时的轨迹控制。 另一方面,按机器人的构造分类,可分为四类: (a) 直角坐标型:该型机器人前三个关节为移动关节,运动方向垂直,其控制方案与数控机床类似,各关节之间没有耦合,不会产生奇异状态,刚性好、精度高。缺陷是占地面积大、工作空间小。 (b) 圆柱坐标型:该型机器人前三个关节为两个移动关节和一种转动关节,以, r, z为坐标,位置函数为P=f (, r, z),其中,r是手臂径向长度,z是垂直方向的位移,是手臂绕垂直轴的角位移。这种形式的机器人占用空间小,构造简朴。 (c) 球坐标型:具有两个转动关节和一种移动关节。以,y 为坐标,位置函数为P =f (,y),该型机器人的长处是灵活性好,占地面积小,但刚度、精度较差。 (d)关节坐标型:有垂直关节型和水平关节型(SCARA 型)机器人。前三个关节都是回转关节,特点是动作灵活、工作空间大、占地面积小,缺陷是刚度和精度较差。本文设计的机器人为关节坐标型。 第三,按驱动方式分类可分为:(a) 气压驱动;(b) 液压驱动;(c) 电气驱动。 电气驱动是20世纪90年代后机器人系统应用最多的驱动方式。它有构造简朴、易于控制、使用以便、运动精度高、驱动效率高、不污染环境等长处。本文设计的机器人三个关节均使用电气驱动。 第四,按用途分类可分为搬运机器人、喷涂机器人、焊接机器人、装配机器人、切削加工机器人和特种用途机器人等。 本文的机器人为实验演示用途的机器人。 2.3 机器人手臂构造方案设计 手臂的总体设计是工业机器人设计的首要问题,重要有涉及总体方案设计和基本技术参数设计。 2.3.1 方案功能设计与分析 2.3.1.1 机器人手臂自由度的分派和构形 手臂是执行机构中的重要运动部件,它用来支承腕关节和末端执行器,并使它们能在空间运动。为了使手部能达到工作空间的任意位置,手臂一般至少有三个自由度,少数专用的工业机器人手臂自由度少于三个。手臂的构造形式有多种,常用的构形如图21所示。 图 2-1 几种多自由度机器人手臂构形 本课题规定机器人手臂能达到工作空间的任意位置和姿态,同步要构造简朴,容易控制。综合考虑后拟定该机器人具有五个自由度,其中手臂三个自由度,手爪部分二个自由度,由于在同样的体积条件下,关节型机器人比非关节型机器人有大得多的相对空间(手腕可达到的最大空间体积与机器人本体外壳体积之比)和绝对工作空间,构造紧凑,同步关节型机器人的动作和轨迹更灵活,因此该型机器人采用关节型机器人的构造。 旋转关节相对平移关节来讲,操作空间大,构造紧凑,重量轻,关节易于密封防尘。这里机器人手臂使用了三个旋转关节,综合多种手臂构形,最后拟定其构造形式 为图21中的第一种形式,此手臂决定了末端执行器在空间的位置。 关节型机器人手臂有三个转动关节,一般腰关节的转轴是铅垂的,手臂在水平面内可绕腰关节轴转动,肩关节和肘关节的转轴平行,且都平行于水平面,故手臂可在垂直面内转动。由三个转动关节构成的关节组联接在小臂杆的端部,模拟人的手腕,决定末端件的姿态。在运动学构造上,此类机器人最像人的手臂,因而构造最紧凑,柔性最佳,可达空间最大,它甚至可以绕过障碍物达到目的点,因而是机器人中最有前程的一种。但由于三个关节都是转动的,故臂端的辨别率完全取决于它在工作空间中的位置。此外,位置精度也较差。 2.3.1.2 机器人手臂构造方案的对比分析及选择 参照国内外工业机器人的典型构造17 23,初步对各个回转关节的构造单独分析。 (1) 腰部回转关节 图 2-2 腰部回转示意图 1 图 2-3 腰部回转示意图 2 方案一:如图22所示,电机安装在底座下面,其输出轴经谐波减速器减速后,直接带动第一关节输出轴,使整个腰部在基座上回转。 方案二:如图23所示,电机安装在底座上面,其输出轴先经谐波减速器减速,再经一对齿轮减速后,由第一关节输出轴带动整个腰部在基座上回转。 两种方案在传动实现上,都是可行的。均采用了减速比大、体积小、重量轻、精度高、回差小、承载力大、噪音小、效率高、定位安装以便的谐波减速器。虽然方案二在安装和维修方面优于方案一,但是方案一的传动构造简朴一点,并且少了一对一般直齿轮,其整体构造并不复杂,电机经谐波减速器减速后,速度己经较低,噪音问题不突出。故综合考虑,腰部回转关节选择方案一。 (2) 大臂和小臂回转关节 图2-4 大臂小臂手腕和手爪回转示意图大臂和小臂回转都是通过EPL减速器减速后直接带动来实现的,且构造简朴,通用性强,成本低,安装以便。由于在同样的体积条件下,关节型机器人比非关节型机器人有大得多的相对空间(手腕可达到的最大空间体积与机器人本体外壳体积之比)和绝对工作空间,构造紧凑,同步关节型机器人的动作和轨迹更灵活,结合本课题的实际条件,因此,大臂、小臂手腕和手爪回转关节选择方案是合理的。3 机器人的构造设计3.1 整体受力图3.2 构造设计计算3.2.1腕部回转关节的设计步进电机的选择:腕部旋转由步进电机直接驱动,设手爪及物体的最大当量回转半径R=50mm,手爪及物体的总重量m=2.5kg,则其转动惯量设机器人手部角速度W1从0加速到420/s所需要的时间t=0.4s,则其角加速度 负载启动惯性矩(不计静磨擦力矩)。由于步进电机不具有瞬时过载能力,故取安全系数为2(不同),则步进电机输出的启动转矩。由于必须不不小于步进电机的最大静转矩,因此选择如下二相步进电机:型号:42HSM02。最大步距角保持转矩为2.4,步矩角1.8,质量为0.23kg.3.2.2 腕部俯仰关节的设计3.2.2.1 步进电机的选择腕部俯仰是由步进电机通过同步带机构驱动的,手爪回转装置及物体的重心到回转中心的距离,腕部当量回转半径,腕部回转电机到回转中心的距离,则腕部俯仰时其转动惯量式中,手爪回转装置及物体总质量约为2。5kg;腕部总质量约为0.1kg;腕部回转电机的质量。 设机器人腕部俯仰角速度从加到所需时间t=0.2s,则腕部俯仰角加速度,腕部俯仰启动惯性矩负载静转矩(静磨擦力矩忽视不计)。由于,故惯性矩忽视不计,则腕部俯仰总转矩。同步带的传动效率同步带的传动比为1。则步进电机输出的启动转矩为因此,选择如下四相混合式步进电机:型号:86HS38;最大静转矩:步矩角:1.8;质量:2。6kg.3.2.2.2 同步带和轮的设计腕部俯仰关节是通过二级同步带传动的,第一级同步带的轴矩为300mm,第二级为150mm.求设计功率,由于前面已考虑到了安全系数,因此,。选择带的节矩从文献8,图36。122可知带的第一级节矩代号为L,相应节矩=9.525mm.第二级节矩代号为XL,相应节矩=5.08mm.拟定带轮直径和带节线长由表面36,1-73知,带轮最小许用齿数考虑到制造和安装等因素,取Z1=12,两级传动比都为1,带轮的直径则带长L可表达为由表面化36.1-70选用原则节线长及其齿数:代号285,齿数为76。,带长代号为210,齿数为56。实际轴间矩取=305。取=155。啮合齿数,则啮合齿数。带宽计算同上,查表得,050。型号为037。 结论第一级同步带类型:节矩代号为L;宽度型号为050. 代号285,齿数为76。带轮齿数.轴间矩.第二级同步带类型:节矩代号为XL;宽度型号为050. 代号160,齿数为80。带轮齿数.轴间矩.3.2.3 小臂关节的设计3.2.3.1 小臂回转关节步进电机和减速器的选择 当小臂与末端执行器均处在水平状态时,各部分对回转中心产生的静转矩最大,其代数和为选择减速器如下:型号为:EPL040007。则步进电机输出的启动转矩为。因此,选择如下四相混合式步进电机;型号:86HS38;最大静转矩:;步矩角;1.8;质量:2.6kg.3.2.3.2 小臂的同步带的设计计算 小臂的减速器输出功率为,设小臂的角速度为250/s,则则,因此初设轴矩为求设计功率,由于前面已考虑到了安全系数,因此=P=97。4。选择带的节矩从文献8,图36。122可知带的节矩代号为XL,相应节矩=5.08mm.由文献8图36,1-22可知:XL型带,当积极带轮速度时,带轮最小许用齿数Z=10,考虑到制造和安装等因素,取,因此大小带轮的节圆直径则带长可以表达为根据表36。1-66选用原则节线长及其齿数Z,得带长代号180,实际轴间矩 取a=165mm啮合齿数,则啮合系数为。带宽 ,由8表功6。1-74可得XL型同步带的基准宽度为。为基本额定功率查得=7.1w.因此,则取,型号为037结论同步带类型为XL,型号为037。带轮Z1=20,Z2=30,d1=32.26,d2=48.535带宽bs=9.5,节线上齿数:Zb=90,带长寿457.2.轴间矩取整a=165mm.3.2.4 大臂回转关节步进及减速器的选择 当大臂与小臂,末端执行器均处在水平状态时,各部分对回转中心产生的静转矩最大,其代数和选择减速器如下:EPL064007则步进电机输出的启动转矩为因此,选择如下四相步进电机:型号:86HS85;额定转矩:;步矩角:。质量:3.8kg.3.2.5 腰部回转关节步进电机及减速器的选择腰部回转关节由步进电机通过减速器来驱动。当腰部回转体与大臂,小臂,末端执行器处在水平状态时,各部分对回转中心产生的转动惯量最大,其代数和为初步规定机器人腰部回转角速度从加速到所需要的时间为,则腰部回转角加速度则腰部回转启动惯性矩选择减速器为EPL64016,其传动效率为85%。则步进电机输出的启动转矩为:因此,选择如下四相步进电机:型号:86HS85;额定转矩:;步矩角:1.8;质量3.8kg。3.2.6 气爪的选择计算夹持力:n个手指的总夹持力产生的摩擦力必须不小于夹持工件的重力mg ,考虑到搬运工件的加速度及冲击力等,必须设定一种安全系数,故因满足既式中摩擦系数,橡胶与铸铁的摩擦系数为,安全系数,取=3。因此,。因此,选择平行型气爪6310系列产品,型号为夹持力为45N,由于45NF,因此是合格的。4 总体装配图的设计 4.1 三维总装配图4.2 腰部装配图设计通过前面的设计计算,重要传动部件已经选择完毕,下一部该做的就是如何把这些重要零部件连接起来,一方面设计腰部回转关节,腰部回转关节的输出轴是由步进电机通过EPL减速器来驱动的,一方面把电机固定在电机连接筒上,电机连接筒在通过内六角柱头螺钉固定在腰筒上,减速器的一端要和电机连接,一端固定在减速器连接筒上,减速器连接筒再通过内六角柱头螺钉固定在电机连接筒上,这样连接就实现了腰部电机的输出,由于腰部输出轴要驱动整个装置转动,因此腰部输出轴上还得通过一种旋转筒连接支撑肋板,这样腰部的装配设计就完毕了,其三维装配图如下:其平面装配图如下:4.3 三维重要零件图其他各部分的设计如上,如下为三维总体装配的重要零件图:连大臂轴连接减速器板第二关节轴第二关节连电机筒第三关节连接大臂筒第三关节连接电机筒第三关节一轴第四关节连接电机筒第四关节支撑大臂轴第四关节轴小臂一轴小臂第五关节连接筒大臂小臂二轴6 总结 通过两个月的艰苦努力,最后完毕了我的毕业设计。在这两个多月的设计过程中,在高金则教师的指引,同窗的协助和自己的努力下,自己学到了诸多的专业知识,在做毕业设计之前自己对Pro/ENGINE的操作不是很纯熟,而目前能纯熟操作Pro/ENGINE的基本指令了,也极大的提高了自己独查多种机械手册的能力,从开始设计到最最后完毕设计的整个过程,训练了自己的设计能力,对自己的思维能力也是有极大的提高。虽然获得了某些成绩,但在整个设计过程中遇到的问题也是诸多的,但是在高金刚教师的细心的指引下以及和同窗们互相的探讨学习中,诸多的问题都已经解决了,由于有的问题需要诸多的时间去解决,这些问题将是我后来的学习目的,总之,这次毕业设计的经历将在我后来的工作和学习中将起到很重要的作用,它使我对机器人的工作原理及机械机构有了更加清晰的进一步的理解,对大学所学的知识有了更加综合的复习和应用,提高了研究设计能力。本毕业设计根据五自由度工业机器人的用途,从机器人本体构造和驱动方案对比分析入手,初步拟定了该机器人的整体构造方案,根据所拟定的方案,分别在AutoCAD和Pro/ENGINEE里绘制出该机器人的总体模型图。并具体论述了驱动电机和传动装置的选择过程。 参照文献 1 刘进长,辛健成.机器人世界M.郑州:河南科学技术出版社, 2 诸静.机器人与控制技术M.杭州:浙江大学出版社,1991 3 吴广玉,姜复兴.机器人工程导论M.哈尔滨:哈尔滨工业大学出版社,1988 4 McDonald.Robot Technology: Theory, Design and ApplicationM.Prentic-Hill,1985 5 周远清,张再兴.智能机器人系统M.北京:清华大学出版社,1989 6 付京孙.机器人学M.合肥:中国科学技术出版社,1992 7 白民,刘远江.从中国国际机器人展览看中国机器人产业的现状和将来J:机器人技术与应用.(1):20-24 8 王坤兴.机器人技术的发展趋势J:机器人技术与应用.1999.(6):10-12 9 国家 863 筹划智能机器人专家组,机器人博览M.合肥:中国科学技术出版社, 10 陈佩云.国内工业机器人发展状况J:机器人技术与应用., (1):2-5 11 刘进长.国内机器人发展战略研究J:机器人技术与应用., (3): 2-5 12 马颂德.基本技术研究与队伍建设J:机器人技术与应用., (5) : 2-513 刘成良,张为公. RV12L6R 焊接机器人运动正解及计算机仿真系统J:东南大学学报., 21(6):63-68 14 王启智,徐心和. PUMA机械手逆运动方程的推导措施及求解J:机器人.1998,3:81-87 15 蔡自兴.机器人学M.北京:清华大学出版社, 16 费仁元,张慧慧.机器人机械设计和分析M.北京:北京工业大学出版社,1998 17 . 索罗门采夫.工业机器人图册M.于东英,安永辰译.北京:机械工业出版社,1991 18 周伯英.工业机器人设计M.北京:机械工业出版社,1995 19 徐灏.机械设计手册(第 5 卷) M.第三版.北京:机械工业出版社,1993 20 机电一体化技术手册编委会.机电一体化技术手册M.北京:机械工业出版社,1999 21 Kong Yu, Dai Ming, Wu Lin. Geometric model of robotic arc welding for automatic programming J: China Welding (English Edition)., 9 (1): 53-5869 22 Kim Jinwook, F.C.Park Kim Munsang. Geometric design tools for stiffness and vibration analysis of robotic mechanisms(C): International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE ,2: 1942-1947 23 Wang K, Lien T K. The structure design and kinematics of a robot manipulatorJ: Robotics and Computer-Integrated Manufacturing.1989, 1(5) :2-3,153-158 24 Eric Lee. Constantions Mavroidis, Solving the Geometric Design Problem of Spatial 3R Robot Manipulators using Polynomial Homotopy ContinuationJ:Journal of Mechanical Design, , 124:57-59 25 机械传动设计/中国机械工程学会,中国机械设计大典编委会. 中国机械设计大典:第四卷. 南昌:江西科学技术出版社,.126 何发昌,邵远编. 多功能机器人的原理及应用. 北京:高等教育出版社,199627 (日)堀尾淳也 著,屈革 译. 微型计算机控制的机器人. 北京:机械工业出版社,198928 成大先. 机械设计手册,第1、2、3和4卷. 北京:化学工业出版社,429 机械设计手册编委会. 机电一体化系统设计. 北京:机械工业出版社,.230 谭庆昌,赵洪志. 机械设计. 北京:高等教育出版社,31 成大先. 机械设计手册单行本.机械传动. 北京;化学工业出版社,.1致 谢本毕业设计是在指引教师高金刚教师的悉心指引下完毕的。从毕业设计开始到毕业完毕,高教师渊博的学识、活跃的学术思想、看待研究的严谨态度和无私的奉献精神都是学生的楷模,高教师平易近人的处世方式也为学生树立了楷模,学生所获得的每一点成绩和每一次进步,无不凝聚着高教师大量的心血。在毕业设计完毕之际,谨向尊敬的高教师致以崇高的敬意和由衷的感谢。 另一方面,感谢机械工程学院各位教师和同窗提供的各方面协助。 也感谢我的家人。她们的支持和理解是我完毕学业的前提和动力。没有她们的支持我不也许顺利完毕我的学业。再次,向所有予以我关怀和协助的教师、同窗和亲友致以深深的谢意和美好的祝愿。附录一:步进电机附录二:艾斯勒EPL-H系列艾斯勒 EPL-H系列减速机EPL-H系列减速机,有关尺寸取决于所安装的电机产品简介:【有关资料下载】产品型号阐明:外形尺寸:参数指标:有关尺寸取决于所安装的电机产品简介:【有关资料下载】产品型号阐明:外形尺寸:参数指标:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!