细数活性污泥法数学模型ASM

上传人:无*** 文档编号:124741803 上传时间:2022-07-25 格式:DOC 页数:34 大小:1.61MB
返回 下载 相关 举报
细数活性污泥法数学模型ASM_第1页
第1页 / 共34页
细数活性污泥法数学模型ASM_第2页
第2页 / 共34页
细数活性污泥法数学模型ASM_第3页
第3页 / 共34页
点击查看更多>>
资源描述
优质文档第六讲第8章 ASM系列活性污泥数学模型8.1 引言20世纪80年头南非开普敦大学的G.v.R.Marais 教授就提出了碳、氮、磷去除的动态活性污泥模型,其探究处于领先的地位。1982年国际水污染探究和限制协会International Association on Water Pollution Research and Control, IAWPRC,现更名为国际水质协会,International Association on Water Quality, IAWQ组织了丹麦、美国、瑞士、南非和日本五国五位专家成立了活性污泥法设计和运行数学模型课题组,该课题组由丹麦技术大学Mogens Henze教授任组长。该课题组在1987年以国际水污染探究和限制协会系列科技探究报告STR1号的形式出版了探究成果,即活性污泥1号模型Activated Sludge Model1,ASM1。活性污泥1号模型ASM1包括碳氧化、硝化和反硝化3个主要作用,以矩阵的形式描述了污水在好氧、缺氧条件下所发生的水解、微生物生长、衰减等8种生化反响过程,模型中包括13个组分、5个化学计量常数和14个动力学参数。活性污泥1号模型ASM1的内容不仅仅是模型本身,还提出了污水特性的描述方法。活性污泥1号模型ASM1得到了普遍的认同和应用,但它的缺点是模型中未包含磷的去除。1995年课题组由丹麦、瑞士、日本和南非四国六位专家组成以国际水质协会系列科技探究报告STR2号的形式出版了活性污泥2号模型ASM2一书,它包括了脱氮和生物除磷处理过程,还增加了厌氧水解、酵解及和聚磷菌有关的反响过程。活性污泥2号模型ASM2中包括了19种生化反响过程、19个组分、22个化学计量常数和42个动力学参数。在活性污泥2号模型ASM2探究刚完成的时候,反硝化和生物除磷的关系尚不清晰,因此,活性污泥2号模型ASM2中未包含这一因素。1999年ASM2被扩展成ASM2D, ASM2D中包括了反硝化聚磷菌。ASM2和ASM2D对脱氮除磷系统有较好的模拟作用。ASM1和ASM2解除了传统的维持Maintenance理论和内源呼吸理论Endogenous Respiration,而接受了Dold等人1980年提出的死亡-再生理论Death Regeneration对微生物衰减过程进展了模型化处理。1999年国际水质协会课题组由丹麦、瑞士、荷兰和日本四国四位专家组成推出活性污泥3号模型ASM3。活性污泥3号模型ASM3所涉及的主要反响过程和ASM1一样,但ASM3变更了ASM1中COD流向特别困难、异养菌死亡-再生循环理论和硝化菌衰减过程的相互干扰,而是将2组菌体的全部转换过程分开,引进了有机物在微生物体内的贮藏及内源呼吸,强调细胞内部的活动过程。微生物的衰减接受了微生物内源呼吸理论 ,允许衰减过程更适应环境条件,重点由水解转到了有机物的胞内贮存。ASM3中包括了12种生化反响过程、13个组分、6个化学计量常数和21个动力学参数,可以模拟除碳、脱氮的动态过程,不包括除磷。图8-1所示为ASM1、ASM2和ASM3模型中3种微生物衰减理论。维持合成生物体合成生物体底物废物底物合成生物体内源呼吸衰减 惰性物质维持理论 内源呼吸理论死亡再生理论图8-1 3种微生物衰减理论ASM1、ASM2和ASM3的共同特点,是将活性污泥过程作为一个困难系统进展探究,将整体分割成局部,建立各个局部的模型,再建立各局部之间的关系,试图从局部和整体的关系上来探究活性污泥过程困难系统的动态性质。由于ASM系列模型是用微分方程组来描述活性污泥系统困难的动态过程,因此模型更留意微生物的反响机理。8.2 活性污泥1号模型ASM1 活性污泥1号模型ASM1描述了活性污泥系统中好氧、缺氧条件下的水解、有机物降解、微生物生长和衰减等8个反响过程,包含了异氧型和自养型微生物。模型包括了多种底物成分、氨氮、硝态氮和生物固体等12种物质的平衡。模型中有19个参数,其中包括5个化学计量系数和14个动力学参数。8.2.1 建模的根本假定 活性污泥1号模型ASM1建模时引入的重要根本假定,即被模拟的活性污泥过程运行正常。根本假定的具体内容如下: (1) 曝气池内pH值及温度处于正常状态下并保持恒定;(2) 池内微生物的种群和浓度处于正常状态;(3) 池内污染物浓度可变,但成分及组成不变;(4) 微生物养分充分;(5) 二沉池内不发生生化反响,仅有物理沉淀作用;6微生物对颗粒有机物的网捕是瞬间完成的;7有机物和有机氮的水解同时进展且速率相等。这些假定使模型本身幸免了一些不确定性,相应增加了模型的真实性和牢靠性。8.2.2 模型的矩阵表达形式 ASM1用表8-1所示的矩阵形式来表述。该矩阵描述活性污泥系统中各种组分的变更规律和相互关系。反响过程用行号j表示,组分用列号i表示。矩阵最上面一行(i)从左到右列出了模型所包含的各种参和反响的组分,左边第一列(j)从上到以下出了各种生物反响过程,最右边的那一列从上到以下出了各种生物反响的动力学表达式或速率方程式。过程速率以表示。矩阵元素为计量系数,说明组分i和过程j的相互关系。假设某一组分不参和过程变更,相应的计量系数为零,矩阵中用空项表示。矩阵内的化学计量系数描述了单个过程中各组分之间的数量关系。符号+表示该组分在转换过程中增加,符号-表示该组分在转换过程中削减。这种矩阵格式可以特别便利的看出全部可能转化过程对全部组分的影响及各种组分的表观转换速率。序号为i的组分表观转化速率可以由下式计算: 8-1式中 一表中i列j行的化学计量系数;一表中j行的反响过程速率,ML-3T-1。例如计算可快速生物降解有机物(j=2)的表观转化速率为: (8-2)优质文档表8-1活性污泥1号模型ASM1的矩阵表达 组分i工艺过程j1SI2SS3XI4XS5XB,H6XB,A7XP8SO9SNO10SNH11SND12XND13SALK反响速率1异养菌的好氧生长1-iXB2异养菌的缺氧生长1-iXB3自养菌的好氧生长14异养菌的衰减1-fP-1fPiXB-fPiXPbH,XB,H5自养菌的衰减1-fP-1fPiXB-fPiXPBA,XB,A6可溶性有机氮的氨化1-1kaSNDXB,H7网捕性有机物的水解1-18网捕性有机氮的水解1-1视察到的转换速率M/L3T化学计量参数:YH-异养菌产率;YA-自养菌产率;fP-生物固体的惰性组分值;iXB-生物固体的含氮量;iXP生物固体惰性组分含氮量溶解性不行生降解有机物MCOD/L3溶解性快速可生物降解有机物MCOD/L3颗粒性不行生物降解有机物MCOD/L3慢速可生物降解有机物MCOD/L3活性异氧菌生物固体MCOD/L3活性自氧菌生物固体MCOD/L3生物固体衷减产生的惰性物质MCOD/L3溶解氧-CODMCOD/L3硝酸盐和亚硝酸盐氮MN/L3NH+4+NH3氮MN/L3溶解性可生物降解有机氮MN/L3颗粒性可生物降解有机氮MN/L3碱度-摩尔单位动力参数:,KS,KO,H,KNO,bH异养生长和衰减;,KNH,KO,A,b A自养生长和衰减;异养菌缺氧生长的校正因数;ka氨化;kh,kX水解;缺氧水解的校正因数优质文档或将表中所示的化学计量系数和反响过程速率表达式代入式8-2,得: (8-3)在矩阵最右项“反响速率”中运用了“开关函数 ”这一概念,以反映环境因素变更所产生的遏制作用,即反响的进展和否。接受具有数学连续性的开关函数可以幸免那些具有开关型不连续特性的反响过程表达式在模拟过程中出现数值的不稳定。对于须要电子受体的反响过程来说,开关函数的概念尤为须要。例如,只有在溶解氧存在的条件下,硝化细菌才能增殖,也就是说硝化作用必需有溶解氧的参和,否那么的话,不管氨氮的浓度凹凸,硝化作用都不会出现。因此,该模型在硝化过程速率表达式中设置了溶解氧开关函数s作为硝化反响的开关,开关函数s如式8-4所示: 8-4式中 SO溶解氧的质量浓度。KO选用一个很小的数值。当溶解氧(SO)趋于零时,开关函数s趋于零,那么硝化速率也趋于零 ;当达SO到必须的浓度之后,开关函数s趋于1, 即硝化作用可顺当进展。和溶解氧开关函数s相类似,反硝化过程的速率表达式中也设置了开关函数。 8-5当溶解氧趋于零时,开关函数趋于1, 反硝化能顺当进展;反之,溶解氧提升到必须浓度后,开关函数趋于零,反硝化作用停顿。8.2.3 废水水质特性及曝气池中组分的划分活性污泥1号模型ASM1将曝气池中的物质废水和活性污泥生物固体区分为7种溶解性组分S和6种颗粒性组分X,下标B,S,O分别表示微生物、底物和氧,共13个组分,各种组分及其定义归纳于表8-2。ASM1中用COD代表传统的BOD5表述废水中有机物的含量及生物固体的含量。COD指标供应了有机底物、微生物和所利用氧的电子等价物之间的关联。COD等价于供电子实力,而电子不会创生也不会消灭,这就为处理系统的物料平衡(如进水、废弃污泥和碳源需氧量之间)供应了牢靠的途径。8.2.3.1 废水水质特性依据有机物的生物降解性,ASM1中将废水中的有机物划分为可生物降解和不行生物降解本章中不行生物降解和惰性同义 两个局部。不行生物降解的有机物又划分为溶解性不行生物降解有机物(SI)和颗粒性不行生物降解有机物(XI)两局部。 表8-2 活性污泥1号模型ASM1组分 组分序号组分符号定义 1 SI 溶解性不行生物降解有机物 M(COD)/L32 SS 溶解性快速可生物降解有机物 M(COD)/L3 3 XI 颗粒性不行生物降解有机物 M(COD)/L3 4 XS 慢速可生物降解有机物 M(COD)/L3 5 XB,H 活性异氧菌生物固体 M(COD)/L3 6 XB,A 活性自氧菌生物固体 M(COD)/L3 7 XP 生物固体衰减产生的惰性物质 M(COD)/L3 8 SO 溶解氧负COD M(-COD)/L3 9 SNO NO3-N和NO2-N (M(N)/L3) 10 SNH NH4-N和NH3-N (M(N)/L3) 11 SND 溶解性可生物降解有机氮 (M(N)/L3) 12 XND 颗粒性可生物降解有机氮 (M(N)/L3) 13 SALK 碱度(mol)注:M:质量单位 L:长度单位在活性污泥系统中溶解性不行生物降解有机物SI不发生任何变更,随出水排出,进水中和出水中SI浓度相等。颗粒性不行生物降解有机物XI那么被活性污泥捕获,成为活性污泥的组成成份之一,在二沉池中一局部XI作为废弃污泥的组成局部从系统中排出,一局部XI又随回流污泥进入活性污泥系统。由于废弃污泥的排放流量小于进水流量,它将会在反响器中累积,累计程度取决于SRT和HRT比值,即和污泥循环因子有关见第节。因此活性污泥系统中XI浓度大于进水XI浓度。可生物降解有机物被进一步划分为溶解性可快速生物降解有机物SS和颗粒性可慢速生物降解有机物XS两个局部。一般来说,可生物降解有机物SS+XS和BOD相关。这两种组分都被用于新细胞的合成,但这两种组分的利用速率有明显差异,大致相差一个数量级。该模型中,溶解性可快速生物降解有机物SS是好氧和缺氧状态下异养菌增殖的唯一底物。SS的重要特征是能够干脆被微生物汲取表8-1中i2j1和i2j2项,在好氧和缺氧状态下用于合成新的异养菌细胞表8-1中i5j1和i5j2项,反响速度特别快。生物合成须要能量,能量产生过程出现的电子将转移给外部电子受体,氧i8j1或硝态氮i9j2。ASM1中废水中有机物的划分如图8-2所示。 溶解性可快速生物降解有机物 可生物降解有机物 颗粒性可慢速生物降解有机物可水解有机物 为溶解性可快速生物降解有机物 溶解性不行生物降解有机物不行生物降解有机物 颗粒性不行生物降解有机物 图8-2 ASM1中废水中有机物的划分活性污泥模型设定,进水中的全部颗粒性有机物,不管是可生物降解的还是不行生物降解的,都被活性污泥絮体快速捕获,经过二沉池之后就能从出水中全部去除。捕获的可生物降解有机物被活性异养菌胶团汲取和贮存,随后是胞外水解和胞内汲取利用;颗粒性可慢速生物降解有机物XS是固态、胶态和溶解态且具有困难构造的有机物颗粒组成的混合体 , 其重要特征是不能干脆进入细胞,必需经过胞外水解作用i4j7水解为溶解性可快速生物降解有机物后i2j7,才能被异养菌所汲取和利用。模型设定水解过程不涉及能量的消耗,也就不涉及电子受体的消耗,即i8j7或i9j7没有计量系数。颗粒性可慢速生物降解有机物XS的水解速率时时比微生物对溶解性可快速生物降解有机物SS的利用速率小得多。当底物只存在XS时,水解成为生长速率的限制因素。在缺氧条件下只有硝酸盐作为最终电子受体,水解速率低于好氧条件。在厌氧条件下既无硝酸盐也无氧,水解作用完全停顿。废水中含氮物质包括无机氮和有机物氮两局部。无机氮包括氨氮SNH和硝酸盐氮、亚硝酸 盐氮SNO。和碳源物质一样,含氮物质也可划分为可生物降解局部和不行生物降解局部,并可进一步划分。有机氮和含碳有机物相关,不行生物降解有机氮划分为溶解性和颗粒性两局部,前者在废水中含量甚微,仅12mg/L, 模型表述中不予考虑。颗粒性不行生物降解有机氮同样被活性污泥捕获,通过解除废弃活性污泥从系统中排出。可生物降解含氮物质包括氨氮、溶解性可生物降解有机氮(SND)和颗粒性可生物降解有机氮(XND),XND和颗粒性可生物降解有机物相关,在颗粒性可生物降解有机物水解的过程中XND也水解i12j8成溶解性可生物降解有机氮(SND, i11j8)。溶解性可生物降解有机氮(SND)在异氧菌的作用下转化成氨氮i10j6。氨氮可作为异氧菌合成的氮源及供应自养硝化菌生长(i6j3)的能源(i10j3)。为了简化,自养菌将氨氮转化(i10j3)为硝酸盐氮(i9j3)的过程被看作是需氧(i8j3)的单步骤反响。所产生的硝酸盐可以作为缺氧状态下异氧菌的最终电子受体(i9j2),并产生氮气。自养菌和异氧菌的细胞衰减会导致颗粒性有机氮的释放(i12j4,i12j5),并可以重新进入循环。ASM1中废水中有机物的划分如图8-2所示。 溶解性可快速生物降解有机物 可生物降解有机物 颗粒性可慢速生物降解有机物可水解有机物 为溶解性可快速生物降解有机物 溶解性不行生物降解有机物不行生物降解有机物 颗粒性不行生物降解有机物 图8-2 ASM1中废水中有机物的划分模型中硝酸盐氮SNO是由自养菌的好氧生长产生,在异氧菌缺氧生长中去除。虽然亚硝酸盐是硝化反响的中间产物,为了简化,在模型中假定只存在硝酸盐氮。模型中NH3-N的氧当量转换系数为4.57,NO3-N的氧当量转换系数为2.86,通过转换系数将以mg/L为单位的NH3-N和NO3-N转换成当量的COD。模型中的水质特性还包括曝气池中DO浓度SO和碱度SALK。须要说明的是,模型并不必须要包含碱度,但模型中包含碱度后能供应预料pH不规那么变更的信息。曝气池中有质子增减的反响都会引起碱度的变更,例如,氨氮氧化为硝酸盐氮时净释放2个质子,消耗碱度;反硝化过程中,当硝酸盐作为电子受体,将有质子的净汲取,增加碱度。曝气池中总碱度低于50mg/L以CaCO3计时,pH将变得极不稳定,会降低到6以下,紧要降低硝化速率见第,和节。确定曝气池进水的水质特性和各重要组分的质量浓度是应用活性污泥数学模型的关键。前述13个组分中含氮组分可以用标准的化学分析方法来测定,而有机组分的测定尚无标准的方法。因此,有机组分的测定成为活性污泥数学模型探究和应用中备受关注的课题。很多有机组分的测定须要通过试验来确定。曝气池进水中总的COD由4个组分组成: 8-6式中 SS溶解性快速可生物降解有机物;XS慢速可生物降解有机物; XI颗粒性不行生物降解有机物;SI溶解性不行生物降解有机物。溶解性不行生物降解有机物SI确实定:从运行泥龄大于10d的完全混合反响器中取出试样,将试样在间歇反响器中曝气,定期取样分析溶解性COD在pH=10.5的条件下,试样中投加硫酸锌,形成Zn(OH)2絮体,去除试样中的胶体物,然后用0.45m滤膜过滤水样,滤液中的COD为溶解性COD,其最终稳定残留溶解性COD值就是SI。在确定溶解性快速可生物降解有机物SS之前必需知道异氧菌的产率YH。测定YH的方法是干脆测定微生物利用溶解性底物生长时的YH值。将废水样沉淀并滤去颗粒性物质,使滤液中只含有溶解性底物,放入一个间歇反响器中。因为YH定义为微生物没有衰减时的生长量,干脆测定的唯一途径是用少量微生物在高底物浓度条件下快速生长。因此,选取废水水样时,溶解性COD要尽可能高,使微生物量相对于初始溶解性COD的比例特别低1%。从完全混合反响器中取出少量已经驯化的微生物接种,定期取样测定溶解性COD和总COD。异氧菌的产率YH可由下式计算: 8-7 8-8 屡次重复之后,就可确定大致YH的数值。 Ekama等人1986提出如下的SS测定方法:接受日循环脉冲进水方式12h进水,12 h不进水,泥龄约2d的完全混合反响器,测定耗氧速率OUR的变更。停顿进水后OUR急剧下降图8-4,这一变更只和快速可生物降解有机物有关。因此,溶解性快速可生物降解有机物SS可以通过下式计算: 8-9式中 停顿进水后耗氧速率的变更,ML-3T-1;V反响器的容积,L3;Q停顿进水前的进水流量,L3T-1。 图8-4 循环脉冲进水完全混合反响器停顿进水后耗氧速率OUR的急剧下降 (Ekama等,1986)同济大学顾国维等2004接受多段间歇OUR呼吸计量法进展了快速可生物降解有机物SS和慢速可生物降解有机物XS的测定探究。在一个密封的间歇反响器内,抑制自氧菌的活动,连续监测OUR的变更,得到图8-5所示的曲线。 图8-5 间歇OUR呼吸计量法所测OUR曲线 (刘芳等,2004)图8-5中的曲线分为3个阶段:tt2时,OUR几乎不变,维持在一个较低的水平。由于废水中的XS耗尽,反响器内微生物进入内源代谢阶段。于是曲线上依次出现两个拐点,3个OUR平台,以此区分SS和XS所引起的OUR积分面积,并由此计算出SS和XS的数值。 8-10 8-11式中 VT反响器容积,L;VW废水体积,L;YH异氧菌的产率;t1,t2OUR曲线出现拐点的时间,h;R1,R2,R3OUR曲线中相应的OUR数值,mg/Lh。当确定总COD,确定SS、SI和XS后,由式8-6那么很简洁计算出XI的数值。SI溶解性不行生物降解有机物。Marais(1993)提出一种比Ekama等人引荐的生物方法要快得多的测定溶解性快速可生物降解COD(SS)的物理方法。对于生活污水,物理方法测定的结果和生物方法能够很好地吻合。测定方法如下:废水样中参加硫酸锌,猛烈混合1min,加人氢氧化钠调整pH至10.5, 然后静置沉降,抽取上清液,然后用0.45m滤膜过滤水样。絮凝可以去除原本能够透过滤膜而被测定为“溶解性”物质的胶体颗粒态有机物。过滤后清液的COD就是总溶解性COD。然后,再减去溶解性不行生物降解的CODSI,即得到溶解性快速可生物降解COD(SS)。这种方法的主要优点是可以同时分析多个样品,能够比生物方法更好地测定废水中溶解性快速可生物降解COD的长期平均值。由表8-2和图8-3可知,废水中含氮物质组分有颗粒性不行生物降解有机氮XN 、溶解性不行生物降解有机氮SN、易生物降解有机氮溶解性SND、慢速生物降解有机氮颗粒性XND和氨氮SNH。如前所述,废水中的含氮组分可以用标准的化学分析方法来测定,如氨氮SNH浓度可以通过对过滤水样的分析来测定。要测定进水中的溶解性不行生物降解有机氮SN的浓度可对测定溶解性不行生物降解COD的水样作凯式氮分析。凯式氮分析同样可以确定进水中的总溶解性有机氮浓度,总溶解性有机氮浓度和溶解性不行生物降解有机氮SN的浓度之差为易生物降解有机氮溶解性SND的浓度。可以认为进水中易生物降解有机氮溶解性SND浓度和慢速生物降解有机氮颗粒性XND的比值类似于溶解性快速可生物降解COD浓度SS和慢速可生物降解COD浓度XS之比,即: 8-12 由式8-12可计算得到慢速生物降解有机氮颗粒性XND的浓度。8.2.3.2 活性污泥中的有机固体模型将活性污泥中的有机(生物)固体划分为如下四个组成局部:活性异养菌XB,H、 活性自养菌(XB,A)、微生物内源衰减(死亡分解)产生的惰性物质XP和累积的进水中不行生物降解有机物(XI)。异养菌中包括能够进展反硝化的异养菌,也包括不能进展反硝化的异养菌。异养菌可以利用快速生物降解有机物在好氧和缺氧状态下进展增殖,但模型设定,在溶解氧和硝态氮都不存在的厌氧状态下异养菌不能增殖。自养菌( 亚硝酸菌和硝酸菌)只有在有溶解氧存在的状况下才能增殖。模型解除了传统的 Pirt(1965)或 Herbert (1958)内源呼吸理论,取而代之的是基于生态学理论的细菌死亡-再生理论见图8-1。活性污泥群体被当作一个生态系统,这个生态系统是具有较高程度的群体组织,依据自动平衡调整原理,可以由一个具有类似纯造就特性的“替代生物群体”取代微生物群体的协同作用。在这个替代生物群体中,将出现生物固体的衰减,衰减过程包含各种各样的缘由 , 如微生物的内源代谢、死亡、捕食以及其它溶菌作用。模拟好氧状态下微生物衰减的最常见方法是,用一个单一的速率表达式包涵全部的作用机制。衰减速率和活性生物量的浓度成正比关系,单位生物量COD的损失导致等量的氧耗。但在电子受体不是氧的状况下这种方法存在问题。因此模型接受了Dold 等人的方法,仍保存一级速率表达式,但速率系数在概念和数量两个方面都和传统的衰减速率系数有明显的差异。在该模型中,衰减过程把活性生物固体(i5j4) ( 异养菌和自养菌)转化成慢速生物降解颗粒性底物(i4j4)和不行生物降解(惰性)的颗粒性产物(i7j4) ,后者也称作内源残留物(XP)。细菌的死亡分解和外源电子受体的存在和否无关,在厌氧、缺氧和好氧条件下均出现死亡。细菌的衰减一方面使生物固体量削减,另一方面,在溶解氧或硝态氮存在的条件下,除了惰性部特别,微生物死亡分解所产生的有机物质作为慢速生物降解底物将被其它还存活的微生物用于生物合成,又产生了新的生物固体,即再生作用。由于在合成过程的能量消耗 , 再生的生物量要低于死亡的生物量,所产生的内源残留物也将滞留在活性污泥絮体中。接受这种死亡-再生模型能够说明传统Herbert 内源呼吸过程中污泥量的削减。在好氧系统中,传统内源呼吸理论和死亡-再生理论得到的结果是一样的,因为两者之 间存在线性相关关系。但在缺氧和厌氧条件下,这两种理论所得到的结果是不一样的。由于异养菌只有在氧或硝态氮存在的条件下才能出现微生物的细胞合成。在既无溶解氧也无态氮的庆氧状态下,死亡生物固体产物的水解和利用将完全停顿,从而导致慢速可生物降解有机物的积聚,使随后的缺氧区(或好氧区)的反硝化实力或好氧速率提高。在厌氧和缺氧条件下,硝化菌都就将出现死亡分解,却不能增殖,因此庆氧区和缺氧的存在将明显影响处理系统的硝化实力。8.2.4 模型的反响过程该模型将曝气池内微生物的生长、微生物的衰减、有机氮的氨化、被生物絮体捕获的颗粒有机物的水解4个反响过程分成8个子过程。每个子过程有假设干个组分参与,每个组分参和假设干个子过程。8个子过程是:(1) 异养菌的好氧生长j1 由表8-1j1可以看出,异养菌的好氧生长是异养菌在有氧条件下利用氧和溶解性底物的结果。由于模型中底物和微生物的质量浓度都是用COD表示,氧可以看作负COD。需氧量等于净COD去除量去除的溶解性底物减去微生物的生成量,氨氮将从溶液中去除并结合到微生物细胞中。溶解性可快速生物降解底物和溶解氧是异养菌好氧生长动力学的速率限制因素。溶解性可快速生物降解底物的去除和微生物的生长成正比。反响速率表达式中包含开关函数,氧呼吸饱和常数很小,在低溶解氧质量浓度时,异养菌停顿好氧生长。2异养菌的缺氧生长j2 表8-1j2描述了异氧菌以硝态氮为最终电子受体的缺氧生长状况。异养菌缺氧生长也是依靠于溶解性可快速生物降解底物生成异氧菌。硝态氮用作最终电子受体,它的去除量和溶解性可快速生物降解底物去除量和细胞生成量之差成比例。和好氧生长相像,氨氮转化为微生物中的有机氮。缺氧生长的速率表达式和好氧生长的相像。事实上,溶解性可快速生物降解底物对速率的影响一样,包括生长和底物利用饱和常数。缺氧条件下底物去除的最大速率比好氧条件下要小。因此在速率表达式中参加一个小于1的经验系数,称为缺氧状态生长修正系数。缺氧生长依靠于硝态氮的质量浓度,这和好氧生长溶解氧浓度的关系相像。并且,当有氧存在时,缺氧生长会受到抑制,所以反响速率要表达式中包含开关函数这一项来反映其影响。3自养菌的好氧生长j3 表8-1j3描述了自氧菌的好氧生长。氨氮作为硝化菌生长的能源,合成自养生物细胞,并转化为硝态氮。另外,小局部氨结合到微生物中。氧的利用量和所氧化的氨氮量成正比。模型中分别用氨氮和氧浓度的饱和函数表示自养菌比生长速率对于它们的依靠关系,后者同时还是一个开关函数。这两个饱和常数和数值都很小。(4) 异养菌的衰减j4 如前所述,模型在模拟异养菌的衰减过程时,根本接受了Dold 等的死亡-再生理论。其速率表达式特别简洁,和异氧菌的浓度呈一级反响关系。而速率系数无论在概念上还是在数值上都不同于以往的衰减系数。这种状况下,衰减的作用是将微生物转化为颗粒物和慢速可生物降解底物的结合物。在这一过程中,没有COD损失,也不利用电子受体。而且,衰减总是以恒定的速率进展(即不是电子受体或其质量浓度的函数),和环境条件无关 。生成的慢速可生物降解物质随后水解j7,释放等量的溶解性可快速生物降解COD 。在好氧条件下,这些底物将伴随着氧的汲取被用作合成新细胞;在缺氧条件下,将消耗硝态氮进展细胞的生长;假如既没有氧又没有硝态氮可利用,将不会发生任何转化,慢速可生物降解底物将产生积累。只有复原好氧或缺氧条件时,它才能被转化利用。(5) 自养菌的衰减j5 自养菌的衰减和异养菌的衰减完全相像。但自养菌的衰减速率常数可能比异养菌的衰减速率常数要小。(6) 可溶性有机氮的氨化j6可溶性有机氮的氨化速率的表达式是一经验式。(7) 网捕性颗粒性有机物的水解j7 由表8-1可以看出,和存在的异养菌质量浓度呈一级反响关系。当被网捕的含碳有机底物量相对于微生物量来说已很大时,水解速率将接近于饱和。因为须要酶的合成,水解速率势必和存在的电子受体的质量浓度有关。所以,模型假定在氧和硝酸盐都不存在的状况下水解速率趋向零。(8) 网捕性颗粒性有机氮的水解j8 假如假定有机氮被匀称地分散在慢速可生物降解有机底物中,那么,被捕获的有机氮的水解速率和慢速可生物降解有机底物的水解速率成正比。8个子过程的反响速率示于表8-1最右一列。8.2.5 模型的参数8.2.5.1 化学计量系数表8-3中汇总了IAWQ活性污泥法设计和运行数学模型课题组给出的ASM1中5个化学计量系数的典型数值。应当说明这些数值是在pH中性和城市污水条件下(20)的典型数值,不同的废水特性和活性污泥组成对于这些数值还是有必须的影响的。自养菌产率系数YA是亚硝化菌和硝化菌结合生长的复合值,文献报道YA的数值范围为0.070.28 g细胞COD产生/gN消耗。ASM1中用mgCOD/L表示自养菌及异氧菌的浓度,1mg MLVSS 约等于1.48mgCOD。硝化作用中每去除1mgNH3-N形成1mg 硝态氮约合成0.02x113/14=0.1614mg细胞物质见第节式9-15,典型的细胞分子式为C5H7O2N,其分子量为113,换算成COD浓度为0.1614x1.48=0.24mg,因此,0.24是YA的理论值。系数fp是表征微生物特性的系数,即表示微生物衰减后以不行生物降解颗粒产物存在的那局部微生物。其数值不会因为废水特性的不同而有较大的不变更。对于典型的细胞分子式C5H7O2N,微生物细胞中的含氮量iXB的数值为0.086gN/g活性生物体细胞COD。生物固体惰性组分含氮量好像更少,iXP值为0.06gN/g内源残留物COD。模型对fp 、iXB和iXP3个化学计量系数的敏感度较小,因此在应用中通常运用典型值。YH和YA对系统的模拟和模型的应用结果影响较大,在设计和优化运行中运用这些系数,应当通过批式、动态连续试验或干脆从生产性处理厂确定这些系数。国外学者就化学计量系数的测定提出了多种生物、物化和模型辨识方法。其中,序批反响器耗氧速率测定法OUR由于简便易行应用较多。表8-3 ASM1中的5个化学计量系数序号化学计量系数符号 单位 典型数值(20) 1异氧菌产率系数YHg细胞COD产生/gCOD消耗 0.67 2自养菌产率系数YAg细胞COD产生/gN消耗 0.24 3生物固体的惰性组分值fp 0.08 4生物固体的含氮量iXBgN/g活性生物体细胞COD 0.086 5生物固体惰性组分含氮量iXPgN/g内源残留物COD 0.068.2.5.2 动力学参数 表8-4中汇总了IAWQ活性污泥法设计和运行数学模型课题组给出的ASM1中14个动力学参数的定义和典型数值。表8-4 ASM1中的14个动力学参数及定义序号动力学参数符号单位引荐值20 10异氧菌的生长和衰减1 异氧菌最大比生长速率d-1 6.0 3.02 异氧菌生长和底物利用饱和常数KSgCOD/m320.0 20.03 异氧菌比衰减死亡速率bHd-1 0.62 0.204 异氧菌氧呼吸饱和常数KO,HgO2/m3 0.20 0.205 反硝化菌硝态氮呼吸饱和常数KNOgNO3-N/m3 0.50 0.506 异氧菌缺氧状态生长修正系数g 0.8 0.8污泥所捕集的颗粒性COD水解7捕集COD的水解速率khgCOD/(g细胞CODd) 3.0 1.08捕集COD水解饱和常数KXgCOD/g细胞COD 0.03 0.019缺氧条件下水解修正系数h 0.4 0.4自养菌的生长和衰减10自养菌最大比生长速率d-1 0.8 0.311自养菌生长和底物利用饱和常数KNHgNH3-N/m3 1.0 1.012自养菌的氧饱和常数KO,AgO2/m3 0.4 0.413自养菌比衰减死亡速率bAd-1 0.12 0.1214溶解性有机氮的氨化速率kam3/(gCODd) 0.08 0.04 下面对表8-4中的参数作一简洁的分析和说明。1异氧菌氧呼吸饱和常数KO,H和反硝化菌硝态氮呼吸饱和常数KNO是用来作为开关函数。当溶解氧浓度下降时,异养菌的好氧生长关闭,缺氧生长开启。同样,自养菌的氧饱和常数KO,A也是用来作为开关函数,当溶解氧水平变低时停顿硝化反响。因此,只要数量级一样、运行浓度相对较小,这些参数的实际取值并不要求特别准确。对于不同的状况不必逐一取值,接受表8-4所提到的典型值也能得到满足的结果。2是表征自养菌生长最关键的参数,对于硝化反响器的设计和限制极为重要。相对于饱和常数KNH来说,对于废水中的化学物质的浓度更敏感,而且能确定防止出现硝化菌流失的最小SRT 。因此,测定要尽量准确。Hall(1974)引荐利用连续流的方法测定。即用一个完全混合反响器,使它在高DO浓度下运行, 并且反响器中只发生硝化反响。在试验起先阶段,降低反响器中废弃污泥排放量,使 SRT时间大于到高度硝化所需的SRT。由于硝态氮随着硝化菌的额外生长而增加,须要随时测量反响器中硝态氮的质量浓度。由于污泥中硝态氮的浓度和自养菌数量成比例,可用硝酸盐的质量浓度变更来估算。假如画出硝态氮浓度自然对数和时间的关系曲线 , 其斜率为。此处 , 是新的SRT,是硝化菌的传统衰减速率系数取用设定值,于是可得。除了Hall引荐的方法,Nowak等1994利用呼吸计量法通过测定自养菌的最大呼吸速率OURmax来间接计算出。Lesouef(1992) 提出用测定硝化速率的方法得到,即在测定硝化速率的两个试验中,参加确定量的底物以提高自养菌浓度,自养菌的生长速率可由两个硝化速率的差值和参加底物的比率得知。3预料污泥产率和需氧量须要知道bH 的准确数值,因此,它必需依据所运用的污泥确定bH 的准确数值。在传统的活性污泥模型中,内源衰减系数k d是依据污泥龄和比底物去除速速率的线性关系而获得,但该过程仅定义了衰减系数k d约为0.05d-1, 比真正的bH值要低。当泥龄提升时估测的k d值就不准确。由于活性污泥1号模型将活性微生物和颗粒性惰性有机物区分开来,因此,Ekama等1986引荐用批量反响器呼吸计量法测定bH值。即从完全混合反响器中取出污泥置于间歇反响器中,几天内屡次测量OUR,氧汲取速率的自然对数和时间关系曲线的斜率就是传统衰减系数。试验过程中,投加20mg/L的硫脲来抑制硝化反响 ,pH 维持在中性的恒定值。假如YH和fp己知,那么bH可由下式计算: 8-13 文献中也有批量反响器呼吸计量法测定bH值其他方法的报道,对于bH值的测定目前尚无标准的方法。 4自养菌比衰减死亡速率bA和传统的衰减速率常数在数值上相等。这是因为由衰减产生的有机物质的循环只和异氧菌的活动有关。5自养菌生长和底物利用饱和常数KNH可以接受Williamson和McCarty1975的无限稀释法确定。它是将从完全混合反响器中取出的硝化活性污泥样品置于间歇进水的反响器中 ,进水中加氨氮,使得体积流速特别小,连续进入低于微生物硝化潜力的氨氮负,使得反响器能获得假稳态。 该试验供应了比硝化速率和假稳态氨氮浓度之间的关系。通过分析,可以获得自养菌生长和底物利用饱和常数KNH的数值值。因为诸如pH值、温度和DO浓度等环境因素会影响硝化速率,在试验中应当留意使他们保持恒定。特殊要保持足够高的DO浓度,使得接近于1。 6异氧菌缺氧状态生长修正系数g和缺氧条件下水解修正系数h是预料反硝化的两个重要参数。g是调整和缺氧条件有关的变更,或调整只有一局部微生物可反硝化的校正因子;h是对慢速生物降解物质在缺氧条件下,水解速率小于好氧条件下进展校正的因子。这两个校正因子在数值上不同,h值较小。进水中有反硝化实力的那局部微生物及处理构筑物等因素会影响这两个参数的值。在两个除最终电子受体不同(一个是好氧条件下的氧,一个是缺氧条件下的硝酸盐)之 外其他完全一样的间歇反响器中,估算氧和硝酸盐的消耗速率,可同时进展测量g和h的试验。该试验的根本原理如下:将污泥引入间歇反响器中,和废水接触后不久,反响器中的 主导反响起先是异养菌依靠易生物降解物质的生长,而后占优势的是利用由慢速降解物质水解产生的底物的反响。进展试验时,须要保证底物和微生物浓度的比例(F/M)保持在图8-5所示的适宜范围。假如F/M太小,那么易生物降解物质的去除时间会太短,无法准确测量OUR和硝酸盐利用率(NUR);假如F/M太小,由于这两个阶段的速率相差太小,以致无法准确的区分 ;只有F/M适宜,才能准确区分这两个区的活性,并有足够的时间去准确测定好氧反响器中的 OUR和缺氧反响器中的NUR。假如OURg代表第一阶段的OUR,NURg代表第一阶段的NUR,那么g可由下式计算: 8-14同时 ,假如OURh代表其次阶段的OUR,而NURg代表其次阶段的NUR,那么h计算如下: 8-157异氧菌最大比生长速率和异氧菌生长和底物利用饱和常数KS很难准确估算,但模 图8-6 F/M比值对间歇反响器OUR的影响 (Ekama等人,1986)型对于它们的值不敏感。的主要功能是预料OUR的最大值,因此,的测定应当以氧汲取的测量为根底。KS的主要功能是开关函数,限制着异养菌生长和底物去除的一级或零级反响动力学。下面介绍Cech等1985估算和KS值的呼吸测定法。从试验活性污泥反响器中取出污泥,曝气1h得到恒定的背景呼吸速率。将污泥和废水按不同的稀释比混合,使微生物的比呼吸速率到达最大。在试验过程中,须要保持高水平的DO 浓度, 使得不同试验中的项大致相等,并接近l 。结合确定的废水特性,用这些化学计量系数和动力学参数可以估算从小试反响器取出的活性污泥中异养菌浓度XB,H。然后,将测定的呼吸速率除以呼吸计中异氧菌浓度,可得到菌种的比呼吸速率。测量值和背景值之差为底物氧化的速率rresp.OX。于是,可以计算异氧菌比生长速率: 8-16因为在试验过程中保持高的DO浓度,只是易降解底物浓度SS的函数。用多种方法分析以SS为函数的数据,可以得到和KS。 8无论是城市污水还是工业废水,慢速可生物降解有机物XS都是废水中可生物降解COD的主体,因此,慢速可生物降解有机物XS的水解反响是模型中的重要反响,须要估算捕集COD慢速可生物降解COD的水解速率kh和捕集COD水解饱和常数KX。为了测定kh,必需使微生物中慢速生物降解物质到达饱和。这同样也可以通过运行日循环脉冲进水的完全混合反响器来完成。图8-4显示了24h内氧汲取的形式 , 在探讨快速可生物降解有机物SS的测定方法时,曾提及停顿进水后OUR的急剧下降和快速可生物降解有机物有关。进水停顿后OUR曲线的平缓是由于慢速可生物降解物质水解所释放底物的降解。曲线持续平缓说明微生物达饱和并且水解以最大速率进展。由此,可以估算kh。而且,OUR曲线随时间下降的模式是由KX确定的。因此,可以用曲线拟合技术估算kh和KX。9基于停顿进水时的可溶性有机氮中氨的释放,可以用一个相类似的抑制了硝化反响的日循环脉冲进水试验来确定溶解性有机氮的氨化速率ka。10) 自养菌比衰减死亡速率bA很难用现有方法进展测定,文献报道值在0.050.15d-1,但极少知到准确值。由上面的探讨可以看出,一些参数不须要测定(表8-5),因为假设值能得到良好的效果。其次,和特定废水的性质一样,其他参数的估算必需按一 的依次来进展,因为得到某些参数之前须要其他参数。表8-6列出了它们的前后关系。须要说明的是,这些参数确实定方法仍旧处于探究开展中,随着模型运用经验的积累,可能会有更好的测定技术。 表8-5 ASM1中可以假设的参数 符号 名称YAbAfpiXBiXP KO,HKNOKO,A自氧菌产率系数自养菌比衰减死亡速率生物固体的惰性组分值生物固体的含氮量生物固体惰性组分含氮量异氧菌氧呼吸饱和常数反硝化菌硝态氮呼吸饱和常数自养菌的氧饱和常数8.2.6 模型的缺欠和运用限制 ASM1推出后,在欧美得到了广泛的运用,成为模拟活性污泥系统的强有力的工具。ASM1主要缺陷是未包含污水中磷的去除。ASM1的缺乏是:它不包括氮和碱度限制异氧菌的动力学表述,导致某些状况下计算物质的浓度会出现负值;氨化动力学无法真正量化,通常假设全部有机物组分组成恒定,即恒定的N:COD比值;异氧菌的水解过程对预料氧的消耗和反硝化起主要影响作用,但这个过程的动力学参数量化是特别困难的;仅用伴有水解的衰减和生长来描述影响内源呼吸的总体因素, 如:生物体的化合物贮藏、死亡、捕食、溶菌作用等,造成动力学参数评价上的困难;没有区分硝化菌在好氧和缺氧条件下的衰减速率,这在长SRT和缺氧反响器体积比例较高时,预料最大硝化速率会有问题。ASM1不能预料可干脆观测到的混合液中的悬浮固体浓度。下面所列各项内容为ASM1模型运用时的限制条件:1温度应在823 之间;2pH值应在6.57.5的范围内;3曝气池中的混合强度不能超过240/s;4反响器的曝气死区所占比例不大于50%, 否那么污泥沉降性能将会恶化;5不适用于超高负荷或泥龄(SRT)小的活性污泥系统,SRT应为330d;6污泥浓度(以COD计)一般应在7507500mg/L之间。表8-6 必需测定和估算的参数、特性及前期所需信息 符号 名称 前期所需信息 SNO SNHSISNISNDYHSSKNHbHXIXSXNDghKSkhKXka溶解性硝酸盐氮浓度溶解性氨氮浓度溶解性不行生物降解COD浓度溶解性不行生物降解有机氮浓度溶解性可生物降解有机氮浓度异氧菌产率系数溶解性快速可生物降解COD浓度自养菌最大比生长速率自养菌生长和底物利用饱和常数异氧菌比衰减死亡速率颗粒性不行生物降解COD浓度慢速可生物降解COD浓度颗粒性可生物降解有机氮浓度异氧菌缺氧状态生长修正系数缺氧条件下水解修正系数异氧菌最大比生长速率异氧菌生长和底物利用饱和常数捕集COD的水解速率捕集COD水解饱和常数溶解性有机氮的氨化速率SNI
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!