资源描述
第40练 数列的通项基础保分练1.若数列的前4项分别是,则此数列的一个通项公式为()A.anB.anC.anD.an2.(2019台州模拟)已知数列an的前n项和为Sn,若3Sn2an3n,则a2019等于()A.220191B.320196C.2019D.20193.已知数列an满足a10, an1(n1, 2, 3, ), 则a2019等于()A.0B.C.D.4.已知数列an的前n项和为Sn,且Sn2an2,则a2019等于()A.22021B.22020C.22019D.220185.由a11,an1给出的数列an的第34项是()A.B.100C.D.6.(2019嘉兴模拟)已知数列an满足:a11,an1(nN*),若bn1(n),b1,且数列bn是递增数列,则实数的取值范围是()A.(2,) B.(3,)C.(,2) D.(,3)7.(2019浙江杭州二中模拟)数列an中,满足a1,是首项为1,公比为3的等比数列,则a100等于()A.390B.3100C.34950D.350508.数列an中,a11,且an1an2n,则a9等于()A.1024B.1023C.510D.5119.数列an中,若a11,an1an,则an_.10.已知数列an的前n项和为Sn,a11,2Sn(n1)an,则an_.能力提升练1.已知数列an的通项为an,当an取得最小值时,n的值为()A.16B.15C.17D.142.(2019浙江萧山中学模拟)设数列an的前n项和为Sn,an1an2n1,且Sn1350.若a22,则n的最大值为()A.51B.52C.53D.543.设各项均为正数的数列an的前n项和为Sn,且Sn满足2S(3n2n4)Sn2(3n2n)0,nN*,则数列an的通项公式是()A.an3n2B.an4n3C.an2n1D.an2n14.已知数列an中,a12,n(an1an)an1,nN*.若对于任意的t0,1,nN*,不等式a1a2a3a15,且a16a17a18a191,据此可得当an取得最小值时,n的值为15.2.A因为an1an2n1,所以an2an12(n1)12n3,得an2an2,且a2n1a2n2(2n1)14n1,所以数列an的奇数项构成以a1为首项,2为公差的等差数列,数列an的偶数项构成以a2为首项,2为公差的等差数列,数列a2n1a2n是以4为公差的等差数列,所以Sn当n为偶数时,1350,无解(因为50512550,52532756,所以接下来不会有相邻两数之积为2700).当n为奇数时,(a11)1350,a11351.因为a22,所以3a11,所以13511,所以n(n1)2700,又nN*,所以n51,故选A.3.A由满足2S(3n2n4)Sn2(3n2n)0,nN*.因式分解可得2Sn(3n2n)(Sn2)0,数列an的各项均为正数,2Sn3n2n,当n1时,2a131,解得a11.当n2时,2an2Sn2Sn13n2n3(n1)2(n1)6n4,an3n2,当n1时,上式成立.an3n2.故选A.4.C根据题意,数列an中,n(an1an)an1,nan1(n1)an1,a1,233,2t2(a1)ta2a3恒成立,32t2(a1)ta2a3.2t2(a1)ta2a0,在t0,1上恒成立,设f(t)2t2(a1)ta2a,t0,1,即解得a1或a3.5.6解析由a10,且anan112(n1)(nN*,n2),得anan12n1(n2),则a2a1221,a3a2231,a4a3241,anan12n1(n2),以上各式累加得an2(23n)(n1)2n1n21(n2),当n1时,上式仍成立,所以bnnn1nn1(n2n)n1(nN*).由得解得n.因为nN*,所以n6,所以数列bn的最大项为第6项.2nn解析Snn2n1,令n1,得a11,anSnSn12(n1)(n2),经检验a11不符合上式,an又数列bn为等比数列,b2a22,b4a58,q24,q2,b11,bn2n1.Tn2n1,c2c1211,c3c2221,cncn12n11,以上各式相加得cnc1(n1),c1a11,cn12nn1,cn2nn.6
展开阅读全文