(课标专用)天津市2020高考数学二轮复习 专题能力训练15 直线与圆

上传人:Sc****h 文档编号:120252794 上传时间:2022-07-17 格式:DOCX 页数:10 大小:2.40MB
返回 下载 相关 举报
(课标专用)天津市2020高考数学二轮复习 专题能力训练15 直线与圆_第1页
第1页 / 共10页
(课标专用)天津市2020高考数学二轮复习 专题能力训练15 直线与圆_第2页
第2页 / 共10页
(课标专用)天津市2020高考数学二轮复习 专题能力训练15 直线与圆_第3页
第3页 / 共10页
点击查看更多>>
资源描述
专题能力训练15直线与圆专题能力训练第36页一、能力突破训练1.已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.x-322+y2=254B.x+342+y2=2516C.x-342+y2=2516D.x-342+y2=254答案:C解析:因为圆心在x轴的正半轴上,排除B;代入点A(0,1),排除A,D.故选C.2.若直线x-2y-3=0与圆C:(x-2)2+(y+3)2=9交于E,F两点,则ECF的面积为()A.32B.25C.355D.34答案:B解析:由题意知圆心坐标为C(2,-3),半径为r=3,则ECF的高h为圆心到直线的距离d=|2+23-3|1+(-2)2=5,底边长为l=2r2-d2=29-5=4,所以SECF=1245=25,故选B.3.已知直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则ABP面积的取值范围是()A.2,6B.4,8C.2,32D.22,32答案:A解析:设圆心到直线AB的距离d=|2+0+2|2=22.点P到直线AB的距离为d.易知d-rdd+r,即2d32.又|AB|=22,SABP=12|AB|d=2d,2SABP6.4.已知实数a,b满足a2+b2-4a+3=0,函数f(x)=asin x+bcos x+1的最大值记为(a,b),则(a,b)的最小值是()A.1B.2C.3+1D.3答案:B解析:由题意知(a,b)=a2+b2+1,且a,b满足a2+b2-4a+3=0,即点(a,b)在圆C:(a-2)2+b2=1上,圆C的圆心为(2,0),半径为1,a2+b2表示圆C上的动点(a,b)到原点的距离,最小值为1,所以(a,b)的最小值为2.故选B.5.已知两条直线l1:x+ay-1=0和l2:2a2x-y+1=0.若l1l2,则a=.答案:0或12解析:当a=0时,l1l2;当a0时,由-1a2a2=-1,解得a=12,所以a=0或a=12.6.已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且直线3x+4y+2=0与该圆相切,则该圆的方程为.答案:(x-1)2+y2=1解析:因为抛物线y2=4x的焦点坐标为(1,0),所以a=1,b=0.又根据|31+40+2|32+42=1=r,所以圆的方程为(x-1)2+y2=1.7.(2019天津十二重点中学联考(二)已知圆C的圆心在x轴的正半轴上,且y轴和直线3x+4y+4=0均与圆C相切,则圆C的方程为.答案:(x-2)2+y2=4解析:设圆C的方程为(x-a)2+y2=a2(a0).直线3x+4y+4=0与圆C相切,|3a+4|32+42=a,解得a=2(舍去负值).故圆C的方程为(x-2)2+y2=4.8.已知P是抛物线y2=4x上的动点,过点P作抛物线准线的垂线,垂足为M,N是圆(x-2)2+(y-5)2=1上的动点,则|PM|+|PN|的最小值是.答案:26-1解析:抛物线y2=4x的焦点为F(1,0),圆(x-2)2+(y-5)2=1的圆心为C(2,5),根据抛物线的定义可知点P到准线的距离等于点P到焦点的距离,进而推断出当P,C,F三点共线时,点P到点C的距离与点P到抛物线的焦点距离之和的最小值为|FC|=(2-1)2+(5-0)2=26,故|PM|+|PN|的最小值是|FC|-1=26-1.9.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线x-3y=4相切.(1)求圆O的方程;(2)若圆O上有两点M,N关于直线x+2y=0对称,且|MN|=23,求直线MN的方程;(3)设圆O与x轴相交于A,B两点,若圆内的动点P使|PA|,|PO|,|PB|成等比数列,求PAPB的取值范围.解:(1)依题意,圆O的半径r等于原点O到直线x-3y=4的距离,即r=41+3=2.所以圆O的方程为x2+y2=4.(2)由题意,可设直线MN的方程为2x-y+m=0.则圆心O到直线MN的距离d=|m|5.由垂径定理,得m25+(3)2=22,即m=5.所以直线MN的方程为2x-y+5=0或2x-y-5=0.(3)设P(x,y),由题意得A(-2,0),B(2,0).由|PA|,|PO|,|PB|成等比数列,得(x+2)2+y2(x-2)2+y2=x2+y2,即x2-y2=2.因为PAPB=(-2-x,-y)(2-x,-y)=2(y2-1),且点P在圆O内,所以0x2+y24,x2-y2=2.由此得0y2|AA|.所以点B的轨迹是以A,A为焦点,长轴长为4的椭圆.其中,a=2,c=3,b=1,故曲线的方程为x24+y2=1.(2)连接OB.因为B为CD的中点,所以OBCD,即OBAB.设B(x0,y0),则x0(x0-3)+y02=0.又x024+y02=1,解得x0=23,y0=23.则kOB=22,kAB=2,则直线AB的方程为y=2(x-3),即2x-y-6=0或2x+y-6=0.11.已知过点A(0,1),且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OMON=12,其中O为坐标原点,求|MN|.解:(1)由题意可知直线l的方程为y=kx+1.因为l与C交于两点,所以|2k-3+1|1+k21,解得4-73k4+73.所以k的取值范围为4-73,4+73.(2)设M(x1,y1),N(x2,y2).将y=kx+1代入方程(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0.所以x1+x2=4(1+k)1+k2,x1x2=71+k2.OMON=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=4k(1+k)1+k2+8.由题设可得4k(1+k)1+k2+8=12,解得k=1,所以l的方程为y=x+1.故圆心C在l上,所以|MN|=2.二、思维提升训练12.在矩形ABCD中,|AB|=1,|AD|=2,动点P在以点C为圆心且与BD相切的圆上.若AP=AB+AD,则+的最大值为()A.3B.22C.5D.2答案:A解析:建立如图所示的平面直角坐标系,则A(0,1),B(0,0),D(2,1).设P(x,y),由|BC|CD|=|BD|r,得r=|BC|CD|BD|=215=255,即圆的方程是(x-2)2+y2=45.易知AP=(x,y-1),AB=(0,-1),AD=(2,0).由AP=AB+AD,得x=2,y-1=-,所以=x2,=1-y,所以+=12x-y+1.设z=12x-y+1,即12x-y+1-z=0.因为点P(x,y)在圆(x-2)2+y2=45上,所以圆心C到直线12x-y+1-z=0的距离dr,即|2-z|14+1255,解得1z3,所以z的最大值是3,即+的最大值是3,故选A.13.已知直线k(x+1)+y+2=0恒过定点C,且以C为圆心,5为半径的圆与直线3x+4y+1=0相交于A,B两点,则弦AB的长为.答案:221解析:由x+1=0,y+2=0,得x=-1,y=-2,即直线恒过定点C(-1,-2),所以以C为圆心、5为半径的圆的标准方程为(x+1)2+(y+2)2=25.圆心到直线3x+4y+1=0的距离d=|-3-24+1|32+42=105=2,则AB的长度为|AB|=225-4=221.14.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若PAPB20,则点P的横坐标的取值范围是.答案:-52,1解析:设P(x,y),由PAPB20,得x2+y2+12x-6y20.把x2+y2=50代入x2+y2+12x-6y20,得2x-y+50.由2x-y+5=0,x2+y2=50,可得x=-5,y=-5或x=1,y=7.由2x-y+50表示的平面区域及点P在圆上,可得点P在劣弧EF上,所以点P横坐标的取值范围为-52,1.15.已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=23,则|CD|=.答案:4解析:因为|AB|=23,且圆的半径R=23,所以圆心(0,0)到直线mx+y+3m-3=0的距离为R2-|AB|22=3.由|3m-3|m2+1=3,解得m=-33.将其代入直线l的方程,得y=33x+23,即直线l的倾斜角为30.由平面几何知识知在梯形ABDC中,|CD|=|AB|cos30=4.16.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且|BC|=|OA|,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TA+TP=TQ,求实数t的取值范围.解:圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0y0r,此时不满足直线与圆相交,舍去,故圆C的方程为(x-2)2+(y-1)2=5.(3)解点B(0,2)关于直线x+y+2=0的对称点为B(-4,-2),则|PB|+|PQ|=|PB|+|PQ|BQ|.又点B到圆上点Q的最短距离为|BC|-r=(-6)2+(-3)2-5=35-5=25,所以|PB|+|PQ|的最小值为25,直线BC的方程为y=12x,则直线BC与直线x+y+2=0的交点P的坐标为-43,-23.10
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!