资源描述
题型练3大题专项(一)三角函数、解三角形综合问题题型练第54页1.(2019全国,理18)ABC的内角A,B,C的对边分别为a,b,c.已知asinA+C2=bsin A.(1)求B;(2)若ABC为锐角三角形,且c=1,求ABC面积的取值范围.解:(1)由题设及正弦定理得sinAsinA+C2=sinBsinA.因为sinA0,所以sinA+C2=sinB.由A+B+C=180,可得sinA+C2=cosB2,故cosB2=2sinB2cosB2.因为cosB20,故sinB2=12,因此B=60.(2)由题设及(1)知ABC的面积SABC=34a.由正弦定理得a=csinAsinC=sin(120-C)sinC=32tanC+12.由于ABC为锐角三角形,故0A90,0C90.由(1)知A+C=120,所以30C90,故12a2,从而38SABC0,sinBcosC=33.(2)sinA=sin(B+C)=sinBcosC+cosBsinC,sinA=33+36=32.A为锐角,cosA=12,由余弦定理,得9=b2+c2-2bc12,即9+3bc=(b+c)2,(b+c)29+3b+c22,整理得14(b+c)29,即b+c6,当且仅当b=c=3时取等号.故b+c的最大值为6.4.已知函数f(x)=4tan xsin2-xcosx-3-3.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间-4,4上的单调性.解:(1)f(x)的定义域为xx2+k,kZ.f(x)=4tanxcosxcosx-3-3=4sinxcosx-3-3=4sinx12cosx+32sinx-3=2sinxcosx+23sin2x-3=sin2x+3(1-cos2x)-3=sin2x-3cos2x=2sin2x-3,所以,f(x)的最小正周期T=22=.(2)令z=2x-3,函数y=2sinz的单调递增区间是-2+2k,2+2k,kZ.由-2+2k2x-32+2k,得-12+kx512+k,kZ.设A=-4,4,B=x-12+kx512+k,kZ,易知AB=-12,4.所以,当x-4,4时,f(x)在区间-12,4上单调递增,在区间-4,-12上单调递减.5.已知函数f(x)=3acos2x2+12asin x-32a(0,a0)在一个周期内的图象如图所示,其中点A为图象上的最高点,点B,C为图象与x轴的两个相邻交点,且ABC是边长为4的正三角形.(1)求与a的值;(2)若f(x0)=835,且x0-103,23,求f(x0+1)的值.解:(1)由已知可得f(x)=a32cosx+12sinx=asinx+3.BC=T2=4,T=8,=28=4.由题图可知,正三角形ABC的高即为函数f(x)的最大值a,得a=32BC=23.(2)由(1)知f(x0)=23sin4x0+3=835,即sin4x0+3=45.x0-103,23,4x0+3-2,2,cos4x0+3=1-452=35,f(x0+1)=23sin4x0+4+3=23sin4x0+3+4=23sin4x0+3cos4+cos4x0+3sin4=234522+3522=765.6.在平面直角坐标系xOy中,已知向量m=22,-22,n=(sin x,cos x),x0,2.(1)若mn,求tan x的值;(2)若m与n的夹角为3,求x的值.解:(1)m=22,-22,n=(sinx,cosx),且mn,mn=22,-22(sinx,cosx)=22sinx-22cosx=sinx-4=0.又x0,2,x-4-4,4.x-4=0,即x=4.tanx=tan4=1.(2)由(1)和已知,得cos3=mn|m|n|=sinx-4222+-222sin2x+cos2x=sinx-4=12.又x-4-4,4,x-4=6,即x=512.5
展开阅读全文