(浙江专用)2020高考数学二轮复习 专题一 集合、常用逻辑用语、函数与导数、不等式 第5讲 导数的简单应用专题强化训练

上传人:Sc****h 文档编号:119147329 上传时间:2022-07-13 格式:DOC 页数:10 大小:178KB
返回 下载 相关 举报
(浙江专用)2020高考数学二轮复习 专题一 集合、常用逻辑用语、函数与导数、不等式 第5讲 导数的简单应用专题强化训练_第1页
第1页 / 共10页
(浙江专用)2020高考数学二轮复习 专题一 集合、常用逻辑用语、函数与导数、不等式 第5讲 导数的简单应用专题强化训练_第2页
第2页 / 共10页
(浙江专用)2020高考数学二轮复习 专题一 集合、常用逻辑用语、函数与导数、不等式 第5讲 导数的简单应用专题强化训练_第3页
第3页 / 共10页
点击查看更多>>
资源描述
第5讲 导数的简单应用专题强化训练1函数f(x)x2ln x的最小值为()A.B1C0D不存在解析:选A.因为f(x)x,且x0.令f(x)0,得x1;令f(x)0,得0x0,解得x0,即f(x)的单调递增区间为,(0,),故选C.3已知f(x)x2ax3ln x在(1,)上是增函数,则实数a的取值范围为()A(,2B.C2,)D5,)解析:选C.由题意得f(x)2xa0在(1,)上恒成立g(x)2x2ax30在(1,)上恒成立a2240或2a2或a4a2.4(2019台州二模)已知函数f(x)x2bxc(b,cR),F(x),若F(x)的图象在x0处的切线方程为y2xc,则函数f(x)的最小值是()A2B1C0D1解析:选C.因为f(x)2xb,所以F(x),F(x),又F(x)的图象在x0处的切线方程为y2xc,所以得所以f(x)(x2)20,f(x)min0.5(2019温州瑞安七校模拟)已知函数f(x)(xx1)(xx2)(xx3)(其中x1x2x3),g(x)exex,且函数f(x)的两个极值点为,()设,则()Ag()g()g()g()Bg()g()g()g()Cg()g()g()g()Dg()g()g()g()解析:选D.由题意,f(x)(xx1)(xx2)(xx2)(xx3)(xx1)(xx3),因为f()0,f()0,因为f(x)在(,),(,)上递增,(,)上递减,所以,因为g(x)exex单调递增,所以g()g()g()g()故选D.6(2019宁波诺丁汉大学附中高三期中考试)已知函数f(x)xa,xa,),其中a0,bR,记m(a,b)为f(x)的最小值,则当m(a,b)2时,b的取值范围为()AbBbCbDb解析:选D.函数f(x)xa,xa,),导数f(x)1,当b0时,f(x)0,f(x)在xa,)递增,可得f(a)取得最小值,且为2a,由题意可得2a2,a0,b0方程有解;当b0时,由f(x)10,可得x(负的舍去),当a时,f(x)0,f(x)在a,)递增,可得f(a)为最小值,且有2a2,a0,b0,方程有解;当a时,f(x)在a,递减,在(,)递增,可得f()为最小值,且有a22,即a220,解得0b.综上可得b的取值范围是(,)故选D.7(2019浙江“七彩阳光”联盟模拟)函数f(x)的大致图象是()解析:选B.由f(x)的解析式知有两个零点x与x0,排除A,又f(x),由f(x)0知函数有两个极值点,排除C,D,故选B.8(2019成都市第一次诊断性检测)已知曲线C1:y2tx(y0,t0)在点M处的切线与曲线C2:yex11也相切,则t的值为()A4e2B4e C.D.解析:选A.由y,得y,则切线斜率为k,所以切线方程为y2,即yx1.设切线与曲线yex11 的切点为(x0,y0)由yex11,得yex1,则由ex01,得切点坐标为,故切线方程又可表示为y1,即yxln 1,所以由题意,得ln 11,即ln 2,解得t4e2,故选A.9(2019金华十校高考模拟)已知函数f(x)x3x2ax1,若曲线存在两条斜率为3的切线,且切点的横坐标都大于0,则实数a的取值范围为_解析:由题意知,f(x)x3x2ax1的导数f(x)2x22xa.2x22xa3有两个不等正根,则,得3a.答案:10(2019湖州市高三期末)定义在R上的函数f(x)满足:f(1)1,且对于任意的xR,都有f(x),则不等式f(log2x)的解集为_解析:设g(x)f(x)x,因为f(x),所以g(x)f(x)0,所以g(x)为减函数,又f(1)1,所以f(log2x)log2x,即g(log2x)f(log2x)log2xg(1)f(1)g(log22),所以log2xlog22,又ylog2x为底数是2的增函数,所以0x2,则不等式f(log2x)的解集为(0,2)答案:(0,2)11(2019绍兴、诸暨高考二模)已知函数f(x)x33x,函数f(x)的图象在x0处的切线方程是_;函数f(x)在区间0,2内的值域是_解析:函数f(x)x33x,切点坐标(0,0),导数为y3x23,切线的斜率为3,所以切线方程为y3x;3x230,可得x1,x(1,1),y0,函数是减函数,x(1,),y0函数是增函数,f(0)0,f(1)2,f(2)862,函数f(x)在区间0,2内的值域是2,2答案:y3x2,212(2019台州市高三期末考试)已知函数f(x)x23xln x,则f(x)在区间,2上的最小值为_;当f(x)取到最小值时,x_解析:f(x)2x3(x0),令f(x)0,得x,1,当x(,1)时,f(x)0,x(1,2)时,f(x)0,所以f(x)在区间,1上单调递减,在区间1,2上单调递增,所以当x1时,f(x)在区间,2上的最小值为f(1)2.答案:2113(2019唐山二模)已知函数f(x)ln xnx(n0)的最大值为g(n),则使g(n)n20成立的n的取值范围为_解析:易知f(x)的定义域为(0,)因为f(x)n(x0,n0),当x时,f(x)0,当x时,f(x)0,所以f(x)在上单调递增,在上单调递减,所以f(x)的最大值g(n)fln n1.设h(n)g(n)n2ln nn1.因为h(n)10,所以h(n)在(0,)上单调递减又h(1)0,所以当0nh(1)0,故使g(n)n20成立的n的取值范围为(0,1)答案:(0,1)14(2019浙江东阳中学期中检测)设函数f(x)ex(2x1)axa,其中a1,若存在唯一的整数x0,使得f(x0)0,则a的取值范围是_解析:设g(x)ex(2x1),yaxa,由题意存在唯一的整数x0,使得g(x0)在直线yaxa的下方,因为g(x)ex(2x1),所以当x时,g(x)时,g(x)0,所以当x时,g(x)min2e,当x0时,g(0)1,g(1)e0,直线yaxa恒过(1,0),斜率为a,故ag(0)1,且g(1)3e1aa,解得a1.答案:a115设函数f(x)x3x2bxc,曲线yf(x)在点(0,f(0)处的切线方程为y1.(1)求b,c的值;(2)若a0,求函数f(x)的单调区间;(3)设函数g(x)f(x)2x,且g(x)在区间(2,1)内存在单调递减区间,求实数a的取值范围解:(1)f(x)x2axb,由题意得即(2)由(1)得,f(x)x2axx(xa)(a0),当x(,0)时,f(x)0;当x(0,a)时,f(x)0;当x(a,)时,f(x)0.所以函数f(x)的单调递增区间为(,0),(a,),单调递减区间为(0,a)(3)g(x)x2ax2,依题意,存在x(2,1),使不等式g(x)x2ax20成立,即x(2,1)时,a2,当且仅当x即x时等号成立所以满足要求的a的取值范围是(,2)16(2019浙江金华十校第二学期调研)设函数f(x)exx,h(x)kx3kx2x1.(1)求f(x)的最小值;(2)设h(x)f(x)对任意x0,1恒成立时k的最大值为,证明:46.解:(1)因为f(x)exx,所以f(x)ex1,当x(,0)时,f(x)0,f(x)单调递减,当x(0,)时,f(x)0,f(x)单调递增,所以f(x)minf(0)1.(2)证明:由h(x)f(x),化简可得k(x2x3)ex1,当x0,1时,kR,当x(0,1)时,k,要证:46,则需证以下两个问题;4对任意x(0,1)恒成立;存在x0(0,1),使得6成立先证:4,即证ex14(x2x3),由(1)可知,exx1恒成立,所以ex1x,又x0,所以ex1x,即证x4(x2x3)14(xx2)(2x1)20,(2x1)20,显然成立,所以4对任意x(0,1)恒成立;再证存在x0(0,1),使得6成立取x0,8(1),因为,所以8(1)86,所以存在x0(0,1),使得6,由可知,46.17(2019宁波市高考模拟)已知f(x)x,g(x)xln x,其中a0.若对任意的x1,x21,e都有f(x1)g(x2)成立,求实数a的取值范围解:对任意的x1,x21,e都有f(x1)g(x2)当x1,e有f(x)ming(x)max,当x1,e时,g(x)10,所以g(x)在x1,e上单调递增,所以g(x)maxg(e)e1.当x1,e时,f(x)1,因为a0,所以令f(x)0得xa.当0a1时,f(x)0,所以f(x)在1,e上单调递增,所以f(x)minf(1)a21.令a21e1得a,这与0a1矛盾当1ae时,若1xa,则f(x)0,若axe,则f(x)0,所以f(x)在1,a上单调递减,在a,e上单调递增,所以f(x)minf(a)2a,令2ae1得a,又1ae,所以ae.当ae时,f(x)0,所以f(x)在1,e上单调递减,所以f(x)minf(e)e.令ee1得a,又ae,所以ae.综合得,所求实数a的取值范围是.18(2019宁波九校联考)已知函数f(x)ex.(1)证明:当x0,3时,ex;(2)证明:当x2,3时,f(x)0.证明:(1)要证ex,也即证ex19x.令F(x)ex9x1,则F(x)ex9.令F(x)0,则x2ln 3.因此,当0x2ln 3时,有F(x)0,故F(x)在0,2ln 3)上单调递减;当2ln 3x3时,有F(x)0,故F(x)在2ln 3,3上单调递增所以,F(x)在0,3上的最大值为maxF(0),F(3)又F(0)0,F(3)e3280.故F(x)0,x0,3成立,即ex19x,x0,3成立原命题得证(2)由(1)得:当x2,3时,f(x)ex.令t(x),则t(x)(19x)29(1x)20,x2,3所以,t(x)在2,3上单调递增,即t(x)t(2),x2,3,所以f(x)得证下证f(x)0.即证exx1令h(x)ex(x1)则h(x)ex10,所以h(x)在2,3上单调递增,所以,h(x)ex(x1)e230,得证另证:要证,即证9x218x10,令m(x)9x218x19(x1)28在2,3上递增,所以m(x)m(2)10得证- 10 -
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!