(课标专用)天津市2020高考数学二轮复习 专题能力训练16 椭圆、双曲线、抛物线

上传人:Sc****h 文档编号:119136886 上传时间:2022-07-13 格式:DOCX 页数:12 大小:2.41MB
返回 下载 相关 举报
(课标专用)天津市2020高考数学二轮复习 专题能力训练16 椭圆、双曲线、抛物线_第1页
第1页 / 共12页
(课标专用)天津市2020高考数学二轮复习 专题能力训练16 椭圆、双曲线、抛物线_第2页
第2页 / 共12页
(课标专用)天津市2020高考数学二轮复习 专题能力训练16 椭圆、双曲线、抛物线_第3页
第3页 / 共12页
点击查看更多>>
资源描述
专题能力训练16椭圆、双曲线、抛物线专题能力训练第38页一、能力突破训练1.已知双曲线C:x2a2-y2b2=1(a0,b0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,则C的方程为()A.x28-y210=1B.x24-y25=1C.x25-y24=1D.x24-y23=1答案:B解析:由题意得ba=52,c=3.因为a2+b2=c2,所以a2=4,b2=5,故C的方程为x24-y25=1.2.已知以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.若|AB|=42,|DE|=25,则C的焦点到准线的距离为()A.2B.4C.6D.8答案:B解析:不妨设抛物线C的方程为y2=2px(p0),圆的方程为x2+y2=R2.因为|AB|=42,所以可设A(m,22).又因为|DE|=25,所以R2=5+p24,m2+8=R2,8=2pm,解得p2=16.故p=4,即C的焦点到准线的距离是4.3.若双曲线x2a2-y2b2=1(a0,b0)的离心率为3,则其渐近线方程为()A.y=2xB.y=3xC.y=22xD.y=32x答案:A解析:e=ca=3,c2a2=b2+a2a2=ba2+1=3.ba=2.双曲线焦点在x轴上,渐近线方程为y=bax,渐近线方程为y=2x.4.已知双曲线x2a2-y2b2=1(a0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.x24-y212=1B.x212-y24=1C.x23-y29=1D.x29-y23=1答案:C解析:由双曲线的对称性,不妨取渐近线y=bax.如图所示,|AD|=d1,|BC|=d2,过点F作EFCD于点E.由题易知EF为梯形ABCD的中位线,所以|EF|=12(d1+d2)=3.又因为点F(c,0)到y=bax的距离为|bc-0|a2+b2=b,所以b=3,b2=9.因为e=ca=2,c2=a2+b2,所以a2=3,所以双曲线的方程为x23-y29=1.故选C.5.设双曲线x2a2-y2b2=1(a0,b0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若OP=mOA+nOB(m,nR),且mn=29,则该双曲线的离心率为()A.322B.355C.324D.98答案:C解析:在y=bax中,令x=c,得Ac,bca,Bc,-bca.在双曲线x2a2-y2b2=1中,令x=c,得Pc,b2a.当点P的坐标为c,b2a时,由OP=mOA+nOB,得c=(m+n)c,b2a=mbca-nbca,则m+n=1,m-n=bc.由m+n=1,mn=29,得m=23,n=13或m=13,n=23(舍去),bc=13,c2-a2c2=19,e=324.同理,当点P的坐标为c,-b2a时,e=324.故该双曲线的离心率为324.6.已知双曲线x2a2-y2b2=1(a0,b0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=.答案:2解析:四边形OABC是正方形,AOB=45,不妨设直线OA的方程即双曲线的一条渐近线的方程为y=x.ba=1,即a=b.|OB|=22,c=22.a2+b2=c2,即a2+a2=(22)2,可得a=2.7.已知双曲线C:x2a2-y2b2=1(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若MAN=60,则C的离心率为.答案:233解析:如图所示,由题意可得|OA|=a,|AN|=|AM|=b.MAN=60,|AP|=32b,|OP|=|OA|2-|PA|2=a2-34b2.设双曲线C的一条渐近线y=bax的倾斜角为,则tan=|AP|OP|=32ba2-34b2.tan=ba,32ba2-34b2=ba,解得a2=3b2,e=1+b2a2=1+13=233.8.如图,已知抛物线C1:y=14x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解:(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t).由y=k(x-t),y=14x2消去y,整理得x2-4kx+4kt=0.由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0).由题意知,点B,O关于直线PD对称,所以y02=-x02t+1,x0t-y0=0,解得x0=2t1+t2,y0=2t21+t2.因此,点B的坐标为2t1+t2,2t21+t2.(2)由(1)知|AP|=t1+t2和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=t21+t2.设PAB的面积为S(t),所以S(t)=12|AP|d=t32.9.如图,动点M与两定点A(-1,0),B(1,0)构成MAB,且直线MA,MB的斜率之积为4,设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|0,而当1或-1为方程的根时,m的值为-1或1.结合题设(m0)可知,m0,且m1.设Q,R的坐标分别为(xQ,yQ),(xR,yR),则xQ,xR为方程的两根,因为|PQ|PR|,所以|xQ|1,且1+3m22,所以11+221+3m2-13,且1+221+3m2-153,所以1|PR|PQ|=xRxQ3,且|PR|PQ|=xRxQ53.综上所述,|PR|PQ|的取值范围是1,5353,3.10.已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|MA+MB|=OM(OA+OB)+2.(1)求曲线C的方程;(2)点Q(x0,y0)(-2x00,b0)的左、右焦点,O是坐标原点,过点F2作C的一条渐近线的垂线,垂足为P.若|PF1|=6|OP|,则C的离心率为()A.5B.2C.3D.2答案:C解析:如图所示,由题意可知,|PF2|=b,|OP|=a.由题意,得|PF1|=6a.设双曲线渐近线的倾斜角为.在OPF1中,由余弦定理知cos(180-)=a2+c2-(6a)22ac=c2-5a22ac=-cos.cos=ac,c2-5a22ac=-ac,解得c2=3a2.e=3.13.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为线段FN的中点,则|FN|=.答案:6解析:设N(0,a),由题意可知F(2,0).又M为线段FN的中点,则M1,a2.因为点M在抛物线C上,所以a24=8,即a2=32,即a=42.所以N(0,42).所以|FN|=(2-0)2+(042)2=6.14.在平面直角坐标系xOy中,双曲线x2a2-y2b2=1(a0,b0)的右支与焦点为F的抛物线x2=2py(p0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.答案:y=22x解析:抛物线x2=2py的焦点为F0,p2,准线方程为y=-p2.设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1+p2+y2+p2=y1+y2+p=4|OF|=4p2=2p.所以y1+y2=p.联立双曲线与抛物线方程得x2a2-y2b2=1,x2=2py,消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2=2pb2a2=p,所以b2a2=12.所以该双曲线的渐近线方程为y=22x.15.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.(1)求动点P的轨迹C1的方程;(2)设M0,15,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q两点,求MPQ面积的最大值.解:(1)由已知可得,点P满足|PB|+|PC|=|AC|=252=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=25,2c=2.动点P的轨迹C1的方程为x25+y24=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)y=2tx-t2.联立方程组y=2tx-t2,x25+y24=1,消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,则有=80(4+20t2-t4)0,x1+x2=20t34+20t2,x1x2=5t4-204+20t2.而|PQ|=1+4t2|x1-x2|=1+4t280(4+20t2-t4)4+20t2,点M到PQ的距离为h=15+t21+4t2.由SMPQ=12|PQ|h代入化简,得SMPQ=510-(t2-10)2+104510104=1305,当且仅当t2=10时,SMPQ取最大值1305.16.已知动点C是椭圆:x2a+y2=1(a1)上的任意一点,AB是圆G:x2+(y-2)2=94的一条直径(A,B是端点),CACB的最大值是314.(1)求椭圆的方程.(2)设椭圆的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆于P,Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.解:(1)设点C的坐标为(x,y),则x2a+y2=1.连接CG,由CA=CG+GA,CB=CG+GB=CG-GA.因为G(0,2),CG=(-x,2-y),所以CACB=CG2-GA2=x2+(y-2)2-94=a(1-y2)+(y-2)2-94=-(a-1)y2-4y+a+74,其中y-1,1.因为a1,所以当y=42(1-a)-1,即1-1,即a3时,CACB的最大值是4(1-a)a+74-164(1-a).由条件得4(1-a)a+74-164(1-a)=314,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆的方程是x25+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足x125+y12=1,x225+y22=1,两式相减,整理,得y2-y1x2-x1=-x2+x15(y2+y1)=-x05y0,从而直线PQ的方程为y-y0=-x05y0(x-x0).又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-x05y0(2-x0).因为直线l与x轴不垂直,所以2x0-x02=5y020,从而0x02.假设在线段OF2上存在点M(m,0)(0m2),使得以MP,MQ为邻边的平行四边形是菱形,则线段PQ的垂直平分线必过点M,而线段PQ的垂直平分线方程是y-y0=5y0x0(x-x0),将点M(m,0)代入得-y0=5y0x0(m-x0),得m=45x0,从而m0,85.12
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!