(鲁京津琼专用)2020版高考数学大一轮复习 第十二章 概率、随机变量及其分布 第5讲 古典概型练习(含解析)

上传人:Sc****h 文档编号:119067138 上传时间:2022-07-13 格式:DOC 页数:6 大小:2.33MB
返回 下载 相关 举报
(鲁京津琼专用)2020版高考数学大一轮复习 第十二章 概率、随机变量及其分布 第5讲 古典概型练习(含解析)_第1页
第1页 / 共6页
(鲁京津琼专用)2020版高考数学大一轮复习 第十二章 概率、随机变量及其分布 第5讲 古典概型练习(含解析)_第2页
第2页 / 共6页
(鲁京津琼专用)2020版高考数学大一轮复习 第十二章 概率、随机变量及其分布 第5讲 古典概型练习(含解析)_第3页
第3页 / 共6页
点击查看更多>>
资源描述
第5讲古典概型一、选择题1.集合A2,3,B1,2,3,从A,B中各任意取一个数,则这两数之和等于4的概率是()A. B. C. D.解析从A,B中任意取一个数,共有CC6种情形,两数和等于4的情形只有(2,2),(3,1)两种,P.答案C2.(2017黄山一模)从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A. B. C. D.解析从1,2,3,4,5中任取3个不同的数的基本事件数有C10种.根据三角形三边关系能构成三角形的只有(2,3,4),(2,4,5),(3,4,5)共3个基本事件,故所求概率为P.答案A3.(2017马鞍山一模)某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2xy1上的概率为()A. B. C. D.解析落在2xy1上的点有(1,1),(2,3),(3,5)共3个,故所求的概率为P.答案A4.(2017郑州模拟)一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当ab,bc时称为“凹数”(如213,312等),若a,b,c1,2,3,4,且a,b,c互不相同,则这个三位数是“凹数”的概率是()A. B. C. D.解析选出一个三位数有A24种情况,取出一个凹数有C28种情况,所以,所求概率为P.答案C5.如图,三行三列的方阵中有九个数aij(i1,2,3;j1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是()A. B. C. D.解析从九个数中任取三个数的不同取法共有C84种,因为取出的三个数分别位于不同的行与列的取法共有CCC6种,所以至少有两个数位于同行或同列的概率为1.答案D二、填空题6.(2015江苏卷)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为_.解析这两只球颜色相同的概率为,故两只球颜色不同的概率为1.答案7.(2016上海卷)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为_.解析甲同学从四种水果中选两种,选法种数有C,乙同学的选法种数为C,则两同学的选法种数为CC,两同学各自所选水果相同的选法种数为C,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为P.答案8.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为_.解析从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,基本事件共有C120(个),记事件“七个数的中位数为6”为事件A,若事件A发生,则6,7,8,9必取,再从0,1,2,3,4,5中任取3个数,有C种选法.故所求概率P(A).答案三、解答题9.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区ABC数量50150100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)因为样本容量与总体中的个体数的比是,所以样本中包含三个地区的个体数量分别是:501,1503,1002.所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)从6件样品中抽取2件商品的基本事件数为C15,每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件数为CC4,所以P(D).故这2件商品来自相同地区的概率为.10.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足abc”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.解(1)由题意,(a,b,c)所有的可能的结果有3327(种).设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A).因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)1P(B)1.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.11.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1p2p3 B.p2p1p3C.p1p3p2 D.p3p1p2解析随机掷两枚质地均匀的骰子,所有可能的结果共有36种.事件“向上的点数之和不超过5”包含的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)共10种,其概率p1.事件“向上的点数之和大于5”与“向上的点数之和不超过5”是对立事件,所以“向上的点数之和大于5”的概率p2.因为朝上的点数之和不是奇数就是偶数,所以“点数之和为偶数”的概率p3.故p1p30,又a4,6,8,b3,5,7,即ab,从a4,6,8,b3,5,7分别取1个a和1个b,有339(种),其中满足ab的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为.答案14.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数;(2)求取球2次即终止的概率;(3)求甲取到白球的概率.解(1)设袋中原有n个白球,从袋中任取2个球都是白球的结果数为C,从袋中任取2个球的所有可能的结果数为C.由题意知从袋中任取2球都是白球的概率P,则n(n1)6,解得n3(舍去n2),即袋中原有3个白球.(2)设事件A为“取球2次即终止”.取球2次即终止,即乙第一次取到的是白球而甲取到的是黑球,P(A).(3)设事件B为“甲取到白球”,“第i次取到白球”为事件Ai,i1,2,3,4,5,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.所以P(B)P(A1A3A5)P(A1)P(A3)P(A5).6
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!