资源描述
2007年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第I至第2页,第II卷第3至第4页全卷满分150分,考试时间120分钟考生注意事项:1答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致2答第I卷时,每小题选出答案后,用2铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号3答第II卷时,必须用毫米黑色黑水签字笔在答题卡上书写在试题卷上作答无效4考试结束,监考员将试题和答题卡一并收回参考公式:如果事件互斥,那么球的表面积公式 如果事件相互独立,那么球的体积公式其中表示球的半径第I卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分在每小题给出的四个选项中,只有一项是符合题目要求的1若,则()2椭圆的离心率为()3等差数列的前项和为,若,则()4下列函数中,反函数是其自身的函数为(),5若圆的圆心到直线的距离为,则的值为()或或或或6设,均为直线,其中在平面内,则“”是“且”的()充分不必要条件必要不充分条件12第7题图充分必要条件既不充分也不必要条件7图中的图象所表示的函数的解析式为()8设,且,则的大小关系为()9如果点在平面区域上,点在曲线上,那么的最小值为()10把边长为的正方形沿对角线折成直二面角,折成直二面角后,在四点所在的球面上,与两点之间的球面距离为()11定义在上的函数既是奇函数,又是周期函数,是它的一个正周期若将方程在闭区间上的根的个数记为,则可能为()01352007年普通高等学校招生全国统一考试(安微卷)数学(文科)第II卷(非选择题共95分)注意事项:请用毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置12已知,则的值等于13在四面体中,为的中点,为的中点,则(用表示)14在正方体上任意选择两条棱,则这两条棱相互平行的概率为15函数的图象为,如下结论中正确的是(写出所有正确结论的编号)图象关于直线对称;图象关于点对称;函数在区间内是增函数;由的图角向右平移个单位长度可以得到图象三、解答题:本大题共6小题,共79分解答应写出文字说明、证明过程或演算步骤ABCD16(本小题满分10分)解不等式17(本小题满分14分)如图,在六面体中,四边形是边长为2的正方形,四边形是边长为1的正方形,平面,平面,()求证:与共面,与共面()求证:平面平面;()求二面角的大小(用反三角函数值表示)18(本小题满分14分)设是抛物线的焦点(I)过点作抛物线的切线,求切线方程;(II)设为抛物线上异于原点的两点,且满足,延长,分别交抛物线于点,求四边形面积的最小值19(本小题满分13分)在医学生物试验中,经常以果蝇作为试验对象一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔(I)求笼内恰好剩下1只果蝇的概率;(II)求笼内至少剩下5只果蝇的概率20(本小题满分14分)设函数,其中,将的最小值记为(I)求的表达式;(II)讨论在区间内的单调性并求极值21(本小题满分14分)某国采用养老储备金制度公民在就业的第一年就交纳养老储备金,数目为,以后每年交纳的数目均比上一年增加,因此,历年所交纳的储备金数目是一个公差为的等差数列与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利这就是说,如果固定年利率为,那么,在第年末,第一年所交纳的储备金就变为,第二年所交纳的储备金就变为,以表示到第年末所累计的储备金总额()写出与的递推关系式;()求证:,其中是一个等比数列,是一个等差数列2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算每小题5分,满分55分1234567891011二、填空题:本题考查基本知识和基本运算每小题4分,满分16分12131415三、解答题16本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力本小题满分10分解:因为对任意,所以原不等式等价于即,故解为所以原不等式的解集为17本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力本小题满分14分解法1(向量法):ABCD以为原点,以所在直线分别为轴,轴,轴建立空间直角坐标系如图,则有()证明:与平行,与平行,于是与共面,与共面()证明:,与是平面内的两条相交直线平面又平面过平面平面()解:设为平面的法向量,于是,取,则,设为平面的法向量,于是,取,则,ABCD二面角的大小为解法2(综合法):()证明:平面,平面,平面平面于是,设分别为的中点,连结,有,于是由,得,故,与共面过点作平面于点,则,连结,于是,所以点在上,故与共面()证明:平面,又(正方形的对角线互相垂直),与是平面内的两条相交直线,平面又平面过,平面平面()解:直线是直线在平面上的射影,根据三垂线定理,有过点在平面内作于,连结,则平面,于是,所以,是二面角的一个平面角根据勾股定理,有,有,二面角的大小为18本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力本小题满分14分解:(I)设切点由,知抛物线在点处的切线斜率为,故所求切线方程为即因为点在切线上所以,所求切线方程为(II)设,由题意知,直线的斜率存在,由对称性,不妨设因直线过焦点,所以直线的方程为点的坐标满足方程组得,由根与系数的关系知因为,所以的斜率为,从而的方程为同理可求得当时,等号成立所以,四边形面积的最小值为19本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力本小题满分13分解:以表示恰剩下只果蝇的事件以表示至少剩下只果蝇的事件可以有多种不同的计算的方法方法1(组合模式):当事件发生时,第只飞出的蝇子是苍蝇,且在前只飞出的蝇子中有1只是苍蝇,所以方法2(排列模式):当事件发生时,共飞走只蝇子,其中第只飞出的蝇子是苍蝇,哪一只?有两种不同可能在前只飞出的蝇子中有只是果蝇,有种不同的选择可能,还需考虑这只蝇子的排列顺序所以由上式立得;20本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力本小题满分14分解:(I)我们有 由于,故当时,达到其最小值,即 (II)我们有列表如下:极大值极小值由此可见,在区间和单调增加,在区间单调减小,极小值为,极大值为21本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力本小题满分14分解:()我们有(),对反复使用上述关系式,得 ,在式两端同乘,得,得即如果记,则其中是以为首项,以为公比的等比数列;是以为首项,为公差的等差数列2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1至第2页,第卷第3至第4页全卷满分150分,考试时间120分钟考生注意事项:1 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致2 答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号3 答第卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写在试题卷上作答无效4 考试结束,监考员将试题卷和答题卡一并收回参考公式:如果事件互斥,那么球的表面积公式 其中表示球的半径如果事件相互独立,那么 球的体积公式 其中表示球的半径 第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的(1)若为位全体正实数的集合,则下列结论正确的是( )A B CD解:是全体非正数的集合即负数和0,所以(2)若,, 则( )A(1,1)B(1,1)C(3,7)D(-3,-7) 解:向量基本运算 (3)已知是两条不同直线,是三个不同平面,下列命题中正确的是( )ABC D 解:定理:垂直于一个平面的两条直线互相平行,故选B。(4)是方程至少有一个负数根的( )A必要不充分条件 B充分不必要条件C充分必要条件 D既不充分也不必要条件解:当,得a1时方程有根。a0,b0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号)ab1; +; a2+b22; a3+b33; 答案:,解析:,化简后相同,令a=b=1排除、易知 ,再利用易知正确三、解答题:本大题共6小题共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内.(16) ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA=.(1) 求(2) 若c-b=1,求a的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.解:由cosA=,得sinA= =.又bc sinA=30,bc=156. (1)=bc cosA=156=144.(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2156(1-)=25,a=5(17) 椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率.(1) 求椭圆E的方程;(2) 求F1AF2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E的方程为 由e=,得=,b2=a2-c2 =3c2. 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为()由()知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=(X+2),即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,F1AF2的角平分线所在直线的斜率为正数.设P(x,y)为F1AF2的角平分线所在直线上任一点,则有若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.于是3x-4y+6=-5x+10,即2x-y-1=0.所以F1AF2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分) 某市2010年4月1日4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45,() 完成频率分布表;()作出频率分布直方图;()根据国家标准,污染指数在050之间时,空气质量为优:在51100之间时,为良;在101150之间时,为轻微污染;在151200之间时,为轻度污染。请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.解:() 频率分布表:分 组频 数频 率41,51)251,61)161,71)471,81)681,91)1091,101)5101,111)2空气污染指数4151 61 71 81 91 101 111频率组距()频率分布直方图:()答对下述两条中的一条即可:(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的. 有26天处于良好的水平,占当月天数的. 处于优或良的天数共有28天,占当月天数的. 说明该市空气质量基本良好.(ii)轻微污染有2天,占当月天数的. 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%. 说明该市空气质量有待进一步改善.(19) (本小题满分13分)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EFAB,EFFB,BFC=90,BF=FC,H为BC的中点,()求证:FH平面EDB;()求证:AC平面EDB; ()求四面体BDEF的体积;(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.() 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GHAB且 GH=AB 又EFAB且 EF=ABEFGH. 且 EF=GH 四边形EFHG为平行四边形.EGFH,而EG 平面EDB,FH平面EDB.()证:由四边形ABCD为正方形,有ABBC.又EFAB, EFBC. 而EFFB, EF平面BFC, EFFH. ABFH.又BF=FC H为BC的中点,FHBC. FH平面ABCD. FHAC. 又FHEG, ACEG. 又ACBD,EGBD=G, AC平面EDB.()解: EFFB,BFC=90, BF平面CDEF. BF为四面体B-DEF的高. 又BC=AB=2, BF=FC= (20)(本小题满分12分) 设函数f(x)=sinx-cosx+x+1, 0 x2 ,求函数f(x)的单调区间与极值.(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.解:由f(x)=sinx-cosx+x+1,0 x2,知=cosx+sinx+1,于是=1+sin(x+ ).令=0,从而sin(x+ )=-,得x= ,或x=.当x变化时,f(x)变化情况如下表:X(0, )(,)(,2 )+0-0+f(x)单调递增+2单调递减单调递增因此,由上表知f(x)的单调递增区间是(0, )与(,2 ),单调递减区间是(,),极小值为f()=,极大值为f()= +2.(21)(本小题满分13分)设,.,是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆都与圆相互外切,以表示的半径,已知为递增数列.()证明:为等比数列;()设=1,求数列的前n项和. (本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.解:()将直线y=x的倾斜角记为 , 则有tan = ,sin =.设Cn的圆心为(,0),则由题意知= sin = ,得 = 2 ;同理,题意知将 = 2代入,解得 rn+1=3rn.故 rn 为公比q=3的等比数列.()由于r1=1,q=3,故rn=3n-1,从而 =n,记Sn=, 则有 Sn=1+23-1+33-2+n. =13-1+23-2+(n-1) +n. -,得=1+3-1 +3-2+-n =- n= (n+) Sn= (n+). 2011年普通高等学校招生全国统一考试(安徽卷)数学(文科)参考公式:椎体体积,其中S为椎体的底面积,h为椎体的高。若(x,y),(x,y),(x,y)为样本点,为回归直线,则 ,说明:若对数据适当的预处理,可避免对大数字进行运算。
展开阅读全文