资源描述
铣床主轴箱设计铣床主轴箱设计 1 目录 1.1.概述2 2.2.参数的拟定2 3.3.传动设计3 4.4.传动件的估计5 5.5.动力设计11 6.6.结构设计与说明15 总结20 主要参考文献21 CADCAD 图纸,联系图纸,联系 153893706153893706 铣床主轴箱设计铣床主轴箱设计 2 1.1.概述概述 1.11.1 机床课程设计的目的机床课程设计的目的 机床课程设计,是在金属切削机床课程之后进行的实践性教学环节。其目的在于通过机床运动机械变 速传动系统的结构设计,使学生在拟定传动和变速的结构的结构方案过程中,得到设计构思,方案分 析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确 的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力 1.21.2 铣床的规格系列和用处铣床的规格系列和用处 普通机床的规格和类型有系列型谱作为设计时应该遵照的基础。因此,对这些基本知识和资料作 些简要介绍。 铣床的主参数(规格尺寸)和基本参数: 正转最低 转速 min n ( ) min r 正转最高 转速 nmax ( ) min r 电机功 率 N(kw ) 公比 转 速 级 数 Z 100125031.2612 1.31.3 操作性能要求操作性能要求 1)具有皮带轮卸荷装置 2)手动操纵双向摩擦片离合器实现主轴的正反转及停止运动要求 3)主轴的变速由变速手柄完成 2.2.参数的拟定参数的拟定 2.12.1 确定极限转速与转速范围确定极限转速与转速范围 由任务书已给,转速范围 max 1250 /minnr min 100 /minnr max min 12.5 n n R n 2.22.2 主电机选择主电机选择 合理的确定电机功率 N,使机床既能充分发挥其使用性能,满足生产需要,又不致使电机经常轻 载而降低功率因素。 已知电动机的功率是 3KW,根据车床设计手册附录表 11-32 选,额定功率 3,转 1002 4 YL kw 铣床主轴箱设计铣床主轴箱设计 3 速 1420 ,最大额定转距 2.2,效率 82.5% min r 3.3.传动设计传动设计 3.13.1 主传动方案拟定主传动方案拟定 拟定传动方案,包括传动型式的选择以及开停、换向、制动、操纵等整个传动系统的确定。传动 型式则指传动和变速的元件、机构以及组成、安排不同特点的传动型式、变速类型。 传动方案和型式与结构的复杂程度密切相关,和工作性能也有关系。因此,确定传动方案和型式, 要从结构、工艺、性能及经济等多方面统一考虑。 传动方案有多种,传动型式更是众多,比如:传动型式上有集中传动,分离传动;扩大变速范围 可用增加传动组数,也可用背轮结构、分支传动等型式;变速箱上既可用多速电机,也可用交换齿轮、 滑移齿轮、公用齿轮等。 显然,可能的方案有很多,优化的方案也因条件而异。此次设计中,我们采用集中传动型式的主 轴变速箱。 3.23.2 传动结构式、结构网的选择传动结构式、结构网的选择 结构式、结构网对于分析和选择简单的串联式的传动不失为有用的方法,但对于分析复杂的传 动并想由此导出实际的方案,就并非十分有效。 3.2.13.2.1 确定传动组及各传动组中传动副的数目确定传动组及各传动组中传动副的数目 级数为 Z 的传动系统由若干个顺序的传动组组成,各传动组分别有、个传动副。 Z Z 即 321 ZZZZ 传动副中由于结构的限制以 2 或 3 为合适,即变速级数 Z 应为 2 和 3 的因子: , ba Z 可以有三种方案: 12=322;12=232;12=223; 3.2.23.2.2 动式的拟定传动式的拟定传 12 级转速传动系统的传动组,选择传动组安排方式时,考虑到机床主轴变速箱的具体结构、装置 和性能。 在轴如果安置换向摩擦离合器时,为减少轴向尺寸,第一传动组的传动副数不能多,以 2 为宜。 主轴对加工精度、表面粗糙度的影响很大,因此主轴上齿轮少些为好。最后一个传动组的传动副 常选用 2。 综上所述,传动式为 12=322。 3.2.33.2.3 结构式的拟定结构式的拟定 对于 12=232 传动式,有 6 种结构式和对应的结构网。分别为: , , , 136 12322 216 12322 261 12322 163 12322 422 12322 421 12322 铣床主轴箱设计铣床主轴箱设计 4 初选的方案。 136 12322 3.33.3 转速图的拟定(见下图)转速图的拟定(见下图) 图 3-1 转速图 图 3-3 主传动系统图 铣床主轴箱设计铣床主轴箱设计 5 3.4展开图简图 4.4. 传动件的估算传动件的估算 4.14.1 三角带传动的计算三角带传动的计算 三角带传动中,轴间距 A 可以加大。由于是摩擦传递,带与轮槽间会有打滑,宜可缓和冲击及隔 离振动,使传动平稳。带轮结构简单,但尺寸大,机床中常用作电机输出轴的定比传动。 (1)选择三角带的型号 根据公式 1.1 5.56.05 caa PK PKW 式中 P-电动机额定功率,-工作情况系数 a K 查机械设计图 8-8 因此选择 A 型带,尺寸参数为 B=80mm,=11mm,h=10,。 d b 40 (2)确定带轮的计算直径, D D 带轮的直径越小带的弯曲应力就越大。为提高带的寿命,小带轮的直径不宜过小,即 D 。查机械设计表 8-3,8-7 取主动轮基准直径=125。 min DD Dmm 铣床主轴箱设计铣床主轴箱设计 6 由公式 1 1 2 1 2 D n n D 式中: -小带轮转速,-大带轮转速,-带的滑动系数,一般取 0.02。 n n 所以,由机械设计 A表 8-7 取园整为 224mm。 2 1440 140 1 0.02220.5 800 Dmm (3)确定三角带速度 按公式 1 1 3.14 125 1440 9.42 60 100060 1000 Dn m V s (4)初定中心距 带轮的中心距,通常根据机床的总体布局初步选定,一般可在下列范围内选取: 根据经验公式 取,取=600mm. 12012 0.72DDADDmm2125224698mm 0 A (5)三角带的计算基准长度 L A DD DDAL 2 0 224 1253.14 2 6001252241751.93 24 700 Lmm 由机械设计表 8-2,圆整到标准的计算长度 1800Lmm (6)验算三角带的挠曲次数 ,符合要求。 1000 10.3140 s mv u L 次 (7)确定实际中心距A 0 0 A6001800 17522624 2 LL Amm () (8)验算小带轮包角 ,主动轮上包角合适。 0000 21 1 18057.51170.9120 DD A (9)确定三角带根数Z 根据机械设计式 8-22 得 00 ca l p z pp k k 传动比 1 2 1440/8001.8 v i v 查表 8-5c,8-5d 得= 0.15KW,= 1.32KW 0 p 0 p 铣床主轴箱设计铣床主轴箱设计 7 查表 8-8,=0.98;查表 8-2,=0.96k l k 6.05 Z4.3 1.320.150.98 1.01 所以取 根Z5 (10)计算预紧力 查机械设计表 8-4,q=0.1kg/m 2 0 2 2.5 5001 6.052.5 50010.1 7.54 7.54 5 0.98 130.1 ca p Fqv vzk N 4.24.2 传动轴的估算传动轴的估算 传动轴除应满足强度要求外,还应满足刚度的要求,强度要求保证轴在反复载荷和扭载荷作用下 不发生疲劳破坏。机床主传动系统精度要求较高,不允许有较大变形。因此疲劳强度一般不失是主要 矛盾,除了载荷很大的情况外,可以不必验算轴的强度。刚度要求保证轴在载荷下不至发生过大的变 形。因此,必须保证传动轴有足够的刚度。 4.2.14.2.1 传动轴直径的估算传动轴直径的估算 491() j N dmm n 其中:d:传动轴受扭部分的直径 N:该轴传递的功率 :电动机的功率 d N -该传动轴的计算转速。 j n d NN :电动机到该轴的传动效率 计算转速是传动件能传递全部功率的最低转速。各传动件的计算转速可以从转速图上,按主 j n 轴的计算转速和相应的传动关系确定。 所以 4 1 1.5 0.96 9122 800 1 dmmmm 4 2 1.5 0.96 0.99 9128 500 1 dmmmm 铣床主轴箱设计铣床主轴箱设计 8 4 3 1.5 0.96 0.99 0.99 9130 250 1 dmmmm 此轴径为平均轴径,设计时可相应调整。 主轴轴径直径的确定:为保证机床的工作精度,主轴尺寸一般都是根据其刚度决定的。对于 通用机床的主轴尺寸参数,通常由结构上的要求而定,查表得 主轴前轴径 80mm, 1 D 21 0.864DDmm 4.34.3 齿轮齿数的确定和模数的计算齿轮齿数的确定和模数的计算 4.3.14.3.1 齿轮齿数的确定齿轮齿数的确定 当各变速组的传动比确定以后,可确定齿轮齿数。对于定比传动的齿轮齿数可依据机械设计手册 推荐的方法确定。对于变速组内齿轮的齿数,如传动比是标准公比的整数次方时,变速组内每对齿轮 的齿数和及小齿轮的齿数可以从表 3-6(机械制造装备设计)中选取。一般在主传动中,最小齿数 z S 应大于 1820。采用三联滑移齿轮时,应检查滑移齿轮之间的齿数关系:三联滑移齿轮的最大齿轮之 间的齿数差应大于或等于 4,以保证滑移是齿轮外圆不相碰。 第一组齿轮: 传动比:, 1 0 1 1u 2 1 11 1.26 u 查机械制造装备设计表 3-6,齿数和取 68 z S =34,=34,=26,=42,; Z 2 Z 3 Z 4 Z 5 38Z 6 30Z 第二组齿轮: 传动比:, 1 0 1 1u 2 3 11 3 u 齿数和取 80: z S =40,=40,=27,=53; 7 Z 8 Z 9 Z 10 Z 第三组齿轮: 传动比:, 2 1 2 1 u 2 6 11 6 u 齿数和取 90: z S =72,=18,=26,=64, 11 Z 12 Z 13 Z 14 Z 4.3.24.3.2 齿轮模数的计算齿轮模数的计算 按统一模数的方法计算各齿轮齿数,齿轮模数的初步计算式为 铣床主轴箱设计铣床主轴箱设计 9 3 22 1 (1) 16338 d J mjj iN Mmm Zin :按接触疲劳强度计算的齿轮模数 J Mmm :驱动电动机功率 d N :计算齿轮的计算转速 j n I:大齿轮齿数与小齿轮齿数之比 i1 :小齿轮齿数 1 Z :齿宽系数 =610 m () m B Bm m 为齿宽,为模数 m :许用接触应力 j 其中,=1.5kw, =200r/min, =26 d N j n 1 Z =10, =600MPa m j 3 22 (1.46 1) 1.5 163383 10 261.46 600200 J Mmm (4)标准齿轮: * 20h1c0.25 度, 从机械原理 表 10-2 查得以下公式 齿顶圆 mhzd a a )2+(= * 1 齿根圆 * 1 (22) fa dzhc m 分度圆 mzd = 齿顶高 mhh a a * = 齿根高 mchh a f )+(= * 4.3.44.3.4 齿宽确定齿宽确定 由前面可知,齿宽系数为=10,m=3 所以大齿轮齿宽为,一般小齿轮比大齿轮 m 3 824Bmm 大 宽 12mm,所以小齿轮的宽度为。24226Bmm 小 轴轴 1 1 上各传动副齿轮依次的直径为:(上各传动副齿轮依次的直径为:(mmmm) 1 34 3102d (342) 3108 a d (342.5) 394.5 f d 2 26 378d (262) 384 a d (262.5) 365 f d 3 38 3114d (382) 3120 a d (382.5) 3106.5 f d 轴轴 2 2 上各传动副齿轮依次的直径为:(上各传动副齿轮依次的直径为:(mmmm) 1 34 3102d (342) 3108 a d (342.5) 394.5 f d 2 42 3126d (422) 3132 a d (422.5) 3138.5 f d 3 30 390d (302) 396 a d (302.5) 382.5 f d 铣床主轴箱设计铣床主轴箱设计 10 4 40 3120d (402) 3126 a d (402.5) 3112.5 f d 5 27 381d 5 27 381d (272.5) 373.5 f d 轴轴 3 3 上各传动副齿轮依次的直径为:(上各传动副齿轮依次的直径为:(mmmm) 1 120d 126 a d 112 f d 2 159d 165 a d 151.5 f d 3 216d 222 a d 208.5 f d 4 78d 84 a d 70.5 f d 主轴上各传动副齿轮依次的直径为:(主轴上各传动副齿轮依次的直径为:(mmmm) 1 18 354d 60 a d 46.5 f d 2 64 3192d 198 a d 184.5 f d 4.44.4 带轮结构设计带轮结构设计 查机械设计P156 页,当。D 是轴承外径,查机械零件手册300 d dmm时, 采用腹板式 确定选用深沟球轴承 6211,d=55mm,D=100mm。带轮内孔尺寸是轴承外径尺寸 100mm。齿机械设计 表 8-10 确定参数得: min 8.5,2.0,9.0,12,8,5.5,38 daf bhhef 带轮宽度:125 182 764Bzefmm 分度圆直径:,280 d dmm , 1 1.91.8 100180,5/2811.412dDmmmm CBmm 64,LBmm 4.54.5 片式摩擦离合器的选择和计算片式摩擦离合器的选择和计算 片式摩擦离合器目前在机床中应用广泛,因为它可以在运转中接通或脱开,具有结合平稳、没有 冲击、结构紧凑的特点,部分零件已经标准化,多用于机床主传动。 (1)按扭矩选择 一般应使选用和设计的离合器的额定静扭矩和额定动扭矩满足工作要求,由于普通机床 j M d M 是在空载下启动反向的,故只需按离合器结合后的静负载扭矩来计算。即: mN n N KKMM j nj 铣床主轴箱设计铣床主轴箱设计 11 5.5 0.96 95501.3 95500.96 0.9877.08 800 jn j N MKMKN mN m n (2)摩擦片盘接合面的直径 121 1.5 248 64,1.5 290 120Ddmm DDmm 查 JB/T9190-1999 取=60mm, 1 D 2 110Dmm (3)计算摩擦面对数 2 0 210002 127.5 1000 9 3.14 0.06 75 75 30 1.0 n M K Z fD b p 摩擦片总数为19 110.710Z 根据 JB/T9190-1999 选用机械式多片双联离合器,因为安装在箱内,所以采取湿式。查表可得离 合器参数 H=2.5,模数 m=2.5。查离合器手册表 1.2.6 选用编号为 2 的离合器。 4 46 6箱体的设计箱体的设计 4.6.14.6.1 箱体材料以中等强度的灰铸铁 HT150 铸造时,最小壁厚根据其外形轮廓尺寸选取 3 长宽高(mm)()mm壁厚 500*500*500812 500*500*300800*800*5001015 800*800*5001220 后支承壁取 22mm,前支承壁取 25mm 4.6.24.6.2 轴间距的确定轴间距的确定 mm 12 11 ()3 (3434)102 22 dmZZ 12 11 ()3 (4040)120 22 dmZZmm 12 11 ()3 (1872)135 22 dmZZmm 5.5. 动力设计动力设计 5.15.1 主轴刚度验算主轴刚度验算 5.1.15.1.1 选定前端悬伸量 C,参考机械装备设计P121,根据主轴端部的结构,前支承轴承配置 铣床主轴箱设计铣床主轴箱设计 12 和密封装置的型式和尺寸,这里选定 C=120mm. 5.1.25.1.2 主轴支承跨距 L 的确定 一般最佳跨距,考虑到结构以及支承刚度因磨损会不断降低,应 0 2 3240 420LCmm 取跨距 L 比最佳支承跨距大一些,再考虑到结构需要,这里取 L=600mm。 0 L 5.1.35.1.3 计算 C 点挠度 1)周向切削力的计算 t P 4 2 955 10 d t jj N p D n 其中, 7 5.5,0.96 0.98 d NKW max 0.5 0.60.5 0.6400200 240, 240,31.5 /min j jj DDmm Dnr 取 故,故。 4 4 2 955 100.82 5.5 1.15 10 240 35.5 t pN 4 1.121.736 10 t PPN 33 0.456.98 10,0.355.43 10 N rtft PPN PP 1 1) 驱动力 Q 的计算 参考车床主轴箱指导书 , 7 2.12 10 N Q nzn 其中 7 5.5 0.96 0.984.58,72,3,35.5 /min d NNKW zmnr 所以 74 4.58 2.12 101.13 10 4 72 35.5 QN 3 3)轴承刚度的计算 这里选用 4382900 系列双列圆柱子滚子轴承 根据求得: 0.1030.8 22.222 1.5Cd 0.1030.85 0.1030.85 22.222 1.5708.48 10/ 22.222 1.51009.224 10/ A B CN mm CN mm 4)确定弹性模量,惯性距 I;和长度。 c I, ,a b s 轴的材产选用 40Cr,查简明机械设计手册P6,有 5 2.1 10EMPa 主轴的惯性距 I 为: 铣床主轴箱设计铣床主轴箱设计 13 44 64 4.27 10 64 DD Imm 外内 主轴 C 段的惯性距 Ic 可近似地算: 444 64 0.6 6.25 10 64 c DD Imm 11 切削力 P 的作用点到主轴前支承支承的距离 S=C+W,对于普通车床,W=0.4H, (H 是车床 中心高,设 H=200mm)。 则:1200.4 200200Smm 根据齿轮、轴承宽度以及结构需要,取 b=60mm 计算切削力 P 作用在 S 点引起主轴前端 C 点的挠度 23 22 3 63 csp cAA LSLCsccLscsc yPmm EIEIC LC L 代入数据并计算得=0.1299mm。 csp y 计算驱动力 Q 作用在两支承之间时,主轴前端 C 点子的挠度 cmq y 22 2 6 cmq BA bcLbLbLCLbbc yQmm EILC LC L 计算得:=-0.0026mm cmq y 求主轴前端 C 点的终合挠度 c y 水平坐标 Y 轴上的分量代数和为coscoscos, cycsppcmqqcmm yyyy ,计算得:=0.0297mm.。综合挠度66 ,270 ,180 pqm 其中 cy y0.0928 cz ymm 。综合挠度方向角,又 22 0.118 ccycz yyymmarc72.25 cz yc cy y tg y 。因为,所以此轴满足要求。 0.00020.0002 6000.12yLmm c yy 5.25.2 齿轮校验齿轮校验 在验算算速箱中的齿轮应力时,选相同模数中承受载荷最大,齿数最小的齿轮进接触应力和弯曲应 力的验算。这里要验算的是齿轮 2,齿轮 7,齿轮 12 这三个齿轮。 齿轮 12 的齿数为 18,模数为 4,齿轮的应力: 1)接触应力: 4 1 2088 10 vas f j uk k k k N Q zmuBn 铣床主轴箱设计铣床主轴箱设计 14 u-大齿轮齿数与小齿轮齿数之比; -齿向载荷分布系数;-动载荷系数;-工况系数;-寿命系数k v k A k s k 查机械装备设计表 10-4 及图 10-8 及表 10-2 分布得1.15,1.20;1.05,1.25 HBFBvA kkkk 假定齿轮工作寿命是 48000h,故应力循环次数为 9 6060 500 1 480001.44 10 h NnjL 次 查机械装备设计图 10-18 得,所以:0.9,0.9 FNHN KK 2 3 3 72 11.15 1.05 1.25 0.9 7.5 0.96 0.98 2088 1018 1.024 10 72 18 4 21 500 18 f MPa 2) 弯曲应力: 5 2 191 10 vas w j k k k k N Q zm BYn 查金属切削手册有 Y=0.378,代入公式求得:=158.5Mpa w Q 查机械设计图 10-21e,齿轮的材产选,大齿轮、小齿轮的硬度为 60HRC,故40Cr 渗碳 有,从图 10-21e 读出。因为:1650 f MPa 920 w MPa ,故满足要求,另外两齿轮计算方法如上,均符合要求。, ffww 5.35.3 轴承的校验轴承的校验 轴选用的是角接触轴承 7206 其基本额定负荷为 30.5KN 由于该轴的转速是定值所以齿轮越小越靠近轴承,对轴承的要求越高。根据设计要求,710 /minnr 应该对轴未端的滚子轴承进行校核。 齿轮的直径 24 2.560dmm 轴传递的转矩 n P T9550 Nm 7.5 0.96 955059.3 710 T 齿轮受力 N 3 22 59.3 1412 60 10 r T F d 根据受力分析和受力图可以得出轴承的径向力为 铣床主轴箱设计铣床主轴箱设计 15 N1060 21 1 1 ll lF R r v N35210601412 2 v R 因轴承在运转中有中等冲击载荷,又由于不受轴向力,按机械设计表 10-5 查得 p f 为 1.2 到 1.8,取,则有:3 . 1 p f N 137810623 . 1 111 RXfP p N 6 . 4573523 . 1 222 RXfP p 轴承的寿命 因为,所以按轴承 1 的受力大小计算: 21 PP h 1 . 38309) 1378 17200 ( 85060 10 )( 60 10 3 6 1 6 P C n Lh 故该轴承能满足要求。 6.6.结构设计及说明结构设计及说明 6.16.1 结构设计的内容、技术要求和方案结构设计的内容、技术要求和方案 设计主轴变速箱的结构包括传动件(传动轴、轴承、带轮、齿轮、离合器和制动器等) 、主轴组件、 操纵机构、润滑密封系统和箱体及其联结件的结构设计与布置,用一张展开图和若干张横截面图表示。 课程设计由于时间的限制,一般只画展开图。 主轴变速箱是机床的重要部件。设计时除考虑一般机械传动的有关要求外,着重考虑以下几个方 面的问题。 精度方面的要求,刚度和抗震性的要求,传动效率要求,主轴前轴承处温度和温升的控制,结构 工艺性,操作方便、安全、可靠原则,遵循标准化和通用化的原则。 主轴变速箱结构设计时整个机床设计的重点,由于结构复杂,设计中不可避免要经过反复思考和 多次修改。在正式画图前应该先画草图。目的是: 1) 布置传动件及选择结构方案。 2) 检验传动设计的结果中有无干涉、碰撞或其他不合理的情况,以便及时 改正。 3) 确定传动轴的支承跨距、齿轮在轴上的位置以及各轴的相对位置,以确 定各轴的受力点和受力方向,为轴和轴承的验算提供必要的数据。 6.26.2 展开图及其布置展开图及其布置 展开图就是按照传动轴传递运动的先后顺序,假想将各轴沿其轴线剖开并将这些剖切面平整展开 在同一个平面上。 I 轴上装的摩擦离合器和变速齿轮。有两种布置方案,一是将两级变速齿轮和离合器做成一体。 齿轮的直径受到离合器内径的约束,齿根圆的直径必须大于离合器的外径,负责齿轮无法加工。这样 轴的间距加大。另一种布置方案是离合器的左右部分分别装在同轴线的轴上,左边部分接通,得到一 铣床主轴箱设计铣床主轴箱设计 16 级反向转动,右边接通得到三级反向转动。这种齿轮尺寸小但轴向尺寸大。我们采用第一种方案,通 过空心轴中的拉杆来操纵离合器的结构。 总布置时需要考虑制动器的位置。制动器可以布置在背轮轴上也可以放在其他轴上。制动器不要 放在转速太低轴上,以免制动扭矩太大,是制动尺寸增大。 齿轮在轴上布置很重要,关系到变速箱的轴向尺寸,减少轴向尺寸有利于提高刚度和减小体积。 6.36.3 I I 轴(输入轴)的设计轴(输入轴)的设计 将运动带入变速箱的带轮一般都安装在轴端,轴变形较大,结构上应注意加强轴的刚度或使轴部 受带的拉力(采用卸荷装置) 。I 轴上装有摩擦离合器,由于组成离合器的零件很多,装配很不方便, 一般都是在箱外组装好 I 轴在整体装入箱内。我们采用的卸荷装置一般是把轴承装载法兰盘上,通过 法兰盘将带轮的拉力传递到箱壁上。 车床上的反转一般用于加工螺纹时退刀。车螺纹时,换向频率较高。实现政反转的变换方案很多, 我们采用正反向离合器。正反向的转换在不停车的状态下进行,常采用片式摩擦离合器。由于装在箱 内,一般采用湿式。 在确定轴向尺寸时,摩擦片不压紧时,应留有 0.20.4的间隙,间隙应能调整。mm 离合器及其压紧装置中有三点值得注意: 1) 摩擦片的轴向定位:由两个带花键孔的圆盘实现。其中一个圆盘装 在花键上,另一个装在花键轴上的一个环形沟槽里,并转过一个花键齿,和轴上的花键对正,然后用 螺钉把错开的两个圆盘连接在一起。这样就限制了轴向和周向德两个自由度,起了定位作用。 2) 摩擦片的压紧由加力环的轴向移动实现,在轴系上形成了弹性力的封闭 系统,不增加轴承轴向复合。 3) 结构设计时应使加力环推动摆杆和钢球的运动是不可逆的,即操纵力撤 消后,有自锁作用。 I 轴上装有摩擦离合器,两端的齿轮是空套在轴上,当离合器接通时才和轴一起转动。但脱开的 另一端齿轮,与轴回转方向是相反的,二者的相对转速很高(约为两倍左右) 。结构设计时应考虑这点。 齿轮与轴之间的轴承可以用滚动轴承也可以用滑动轴承。滑动轴承在一些性能和维修上不如滚动 轴承,但它的径向尺寸小。 空套齿轮需要有轴向定位,轴承需要润滑。 6.46.4 齿轮块设计齿轮块设计 齿轮是变速箱中的重要元件。齿轮同时啮合的齿数是周期性变化的。也就是说,作用在一个齿轮 上的载荷是变化的。同时由于齿轮制造及安装误差等,不可避免要产生动载荷而引起振动和噪音,常 成为变速箱的主要噪声源,并影响主轴回转均匀性。在齿轮块设计时,应充分考虑这些问题。 齿轮块的结构形式很多,取决于下列有关因素: 1) 是固定齿轮还是滑移齿轮; 2) 移动滑移齿轮的方法; 3) 齿轮精度和加工方法; 变速箱中齿轮用于传递动力和运动。它的精度选择主要取决于圆周速度。采用同一精度时,圆周 速度越高,振动和噪声越大,根据实际结果得知,圆周速度会增加一倍,噪声约增大 6dB。 工作平稳性和接触误差对振动和噪声的影响比运动误差要大,所以这两项精度应选高一级。 为了控制噪声,机床上主传动齿轮都要选用较高的精度。大都是用 766,圆周速度很低的, 才选 877。如果噪声要求很严,或一些关键齿轮,就应选 655。当精度从 766 提高到 6 55 时,制造费用将显著提高。 不同精度等级的齿轮,要采用不同的加工方法,对结构要求也有所不同。 铣床主轴箱设计铣床主轴箱设计 17 8 级精度齿轮,一般滚齿或插齿就可以达到。 7 级精度齿轮,用较高精度滚齿机或插齿机可以达到。但淬火后,由于变形,精度将下降。因此, 需要淬火的 7 级齿轮一般滚(插)后要剃齿,使精度高于 7,或者淬火后在衍齿。 6 级精度的齿轮,用精密滚齿机可以达到。淬火齿轮,必须磨齿才能达到 6 级。 机床主轴变速箱中齿轮齿部一般都需要淬火。 6.4.16.4.1 其他问题其他问题 滑移齿轮进出啮合的一端要圆齿,有规定的形状和尺寸。圆齿和倒角性质不同,加工方法和画法 也不一样,应予注意。 选择齿轮块的结构要考虑毛坯形式(棒料、自由锻或模锻)和机械加工时的安装和定位基面。尽 可能做到省工、省料又易于保证精度。 齿轮磨齿时,要求有较大的空刀(砂轮)距离,因此多联齿轮不便于做成整体的,一般都做成组 合的齿轮块。有时为了缩短轴向尺寸,也有用组合齿轮的。 要保证正确啮合,齿轮在轴上的位置应该可靠。滑移齿轮在轴向位置由操纵机构中的定位槽、定 位孔或其他方式保证,一般在装配时最后调整确定。 6.56.5 传动轴的设计传动轴的设计 机床传动轴,广泛采用滚动轴承作支撑。轴上要安装齿轮、离合器和制动器等。传动轴应保证这 些传动件或机构能正常工作。 首先传动轴应有足够的强度、刚度。如挠度和倾角过大,将使齿轮啮合不良,轴承工作条件恶化, 使振动、噪声、空载功率、磨损和发热增大;两轴中心距误差和轴芯线间的平行度等装配及加工误差 也会引起上述问题。 传动轴可以是光轴也可以是花键轴。成批生产中,有专门加工花键的铣床和磨床,工艺上并无困 难。所以装滑移齿轮的轴都采用花键轴,不装滑移齿轮的轴也常采用花键轴。 花键轴承载能力高,加工和装配也比带单键的光轴方便。 轴的部分长度上的花键,在终端有一段不是全高,不能和花键空配合。这是加工时的过滤部分。 一般尺寸花键的滚刀直径为 6585。 刀 Dmm 机床传动轴常采用的滚动轴承有球轴承和滚锥轴承。在温升、空载功率和噪声等方面,球轴承都 比滚锥轴承优越。而且滚锥轴承对轴的刚度、支撑孔的加工精度要求都比较高。因此球轴承用的更多。 但是滚锥轴承内外圈可以分开,装配方便,间隙容易调整。所以有时在没有轴向力时,也常采用这种 轴承。选择轴承的型号和尺寸,首先取决于承载能力,但也要考虑其他结构条件。 同一轴心线的箱体支撑直径安排要充分考虑镗孔工艺。成批生产中,广泛采用定径镗刀和可调镗 刀头。在箱外调整好镗刀尺寸,可以提高生产率和加工精度。还常采用同一镗刀杆安装多刀同时加工 几个同心孔的工艺。下面分析几种镗孔方式:对于支撑跨距长的箱体孔,要从两边同时进行加工;支 撑跨距比较短的,可以从一边(丛大孔方面进刀)伸进镗杆,同时加工各孔;对中间孔径比两端大的 箱体,镗中间孔必须在箱内调刀,设计时应尽可能避免。 既要满足承载能力的要求,又要符合孔加工工艺,可以用轻、中或重系列轴承来达到支撑孔直径 的安排要求。 两孔间的最小壁厚,不得小于 510,以免加工时孔变形。mm 花键轴两端装轴承的轴颈尺寸至少有一个应小于花键的内径。 一般传动轴上轴承选用级精度。G 传动轴必须在箱体内保持准确位置,才能保证装在轴上各传动件的位置正确性,不论轴是否转动, 是否受轴向力,都必须有轴向定位。对受轴向力的轴,其轴向定位就更重要。 铣床主轴箱设计铣床主轴箱设计 18 回转的轴向定位(包括轴承在轴上定位和在箱体孔中定位)在选择定位方式时应注意: 1) 轴的长度。长轴要考虑热伸长的问题,宜由一端定位。 2) 轴承的间隙是否需要调整。 3) 整个轴的轴向位置是否需要调整。 4) 在有轴向载荷的情况下不宜采用弹簧卡圈。 5) 加工和装配的工艺性等。 6.66.6 主轴组件设计主轴组件设计 主轴组件结构复杂,技术要求高。安装工件(车床)或者刀具(铣床、钻床等)的主轴参予切削 成形运动,因此它的精度和性能直接影响加工质量(加工精度和表面粗糙度) ,设计时主要围绕着保证 精度、刚度和抗振性,减少温升和热变形等几个方面考虑。 6.6.16.6.1 各部分尺寸的选择各部分尺寸的选择 主轴形状与各部分尺寸不仅和强度、刚度有关,而且涉及多方面的因素。 1) 内孔直径 车床主轴由于要通过棒料,安装自动卡盘的操纵机构及通过卸顶尖的顶杆,必须是空心轴。为了 扩大使用范围,加大可加工棒料直径,车床主轴内孔直径有增大的趋势。 2) 轴颈直径 前支撑的直径是主轴上一主要的尺寸,设计时,一般先估算或拟定一个尺寸,结构确定后再进行 核算。 3) 前锥孔直径 前锥孔用来装顶尖或其他工具锥柄,要求能自锁,目前采用莫氏锥孔。 4) 支撑跨距及悬伸长度 为了提高刚度,应尽量缩短主轴的外伸长度。选择适当的支撑跨距,一般推荐取: aL a L =35,跨距小时,轴承变形对轴端变形的影响大。所以,轴承刚度小时,应选大值,轴刚度差L a L 时,则取小值。 跨距的大小,很大程度上受其他结构的限制,常常不能满足以上要求。安排结构时力求接近上L 述要求。 6.6.26.6.2 主轴轴承主轴轴承 1)轴承类型选择 主轴前轴承有两种常用的类型: 双列短圆柱滚子轴承。承载能力大,可同时承受径向力和轴向力,结构比较简单,但允许的极限 转速低一些。 与双列短圆柱滚子轴承配套使用承受轴向力的轴承有三种: 600角双向推力向心球轴承。是一种新型轴承,在近年生产的机床上广泛采用。具有承载能力大, 允许极限转速高的特点。外径比同规格的双列圆柱滚子轴承小一些。在使用中,这种轴承不承受径向 力。 推力球轴承。承受轴向力的能力最高,但允许的极限转速低,容易发热。 向心推力球轴承。允许的极限转速高,但承载能力低,主要用于高速轻载的机床。 2)轴承的配置 铣床主轴箱设计铣床主轴箱设计 19 大多数机床主轴采用两个支撑,结构简单,制造方便,但为了提高主轴刚度也有用三个支撑的了。 三支撑结构要求箱体上三支撑孔具有良好的同心度,否则温升和空载功率增大,效果不一定好。三孔 同心在工艺上难度较大,可以用两个支撑的主要支撑,第三个为辅助支撑。辅助支撑轴承(中间支撑 或后支撑)保持比较大的游隙(约 0.030.07) ,只有在载荷比较大、轴产生弯曲变形时,辅助mm 支撑轴承才起作用。 轴承配置时,除选择轴承的类型不同外,推力轴承的布置是主要差别。推力轴承布置在前轴承、 后轴承还是分别布置在前、后轴承,影响着温升后轴的伸长方向以及结构的负责程度,应根据机床的 实际要求确定。 在配置轴承时,应注意以下几点: 每个支撑点都要能承受经向力。 两个方向的轴向力应分别有相应的轴承承受。 径向力和两个方向的轴向力都应传递到箱体上,即负荷都由机床支撑件承受。 3)轴承的精度和配合 主轴轴承精度要求比一般传动轴高。前轴承的误差对主轴前端的影响最大,所以前轴承的精度一 般比后轴承选择高一级。 普通精度级机床的主轴,前轴承的选或级,后轴承选或级。选择轴承的精度时,既要CDDE 考虑机床精度要求,也要考虑经济性。 轴承与轴和轴承与箱体孔之间,一般都采用过渡配合。另外轴承的内外环都是薄壁件,轴和孔德 形状误差都会反映到轴承滚道上去。如果配合精度选的太低,会降低轴承的回转精度,所以轴和孔的 精度应与轴承精度相匹配。 1) 轴承间隙的调整 为了提高主轴的回转精度和刚度,主轴轴承的间隙应能调整。把轴承调到合适的负间隙,形成一 定的预负载,回转精度和刚度都能提高,寿命、噪声和抗震性也有改善。预负载使轴承内产生接触变 形,过大的预负载对提高刚度没有明显的小果,而磨损发热量和噪声都会增大,轴承寿命将因此而降 低。 轴承间隙的调整量,应该能方便而且能准确地控制,但调整机构的结构不能太复杂。双列短圆柱 滚子轴承内圈相对外圈可以移动,当内圈向大端轴向移动时,由于 1:12 的内錐孔,内圈将胀大消除 间隙。 其他轴承调整也有与主轴轴承相似的问题。特别要注意:调整落幕的端面与螺纹中心线的垂直度, 隔套两个端面的平行度都由较高要求,否则,调整时可能将轴承压偏而破坏精度。隔套越长,误差的 影响越小。 螺母端面对螺纹中心线垂直度、轴上和孔上套简两端平行度等均有严格的精度要求。 6.6.36.6.3 主轴与齿轮的连接主轴与齿轮的连接 齿轮与主轴的连接可以用花键或者平键;轴做成圆柱体,或者锥面(锥度一般取 1:15 左右) 。锥 面配合对中性好,但加工较难。平键一般用一个或者两个(相隔 180 度布置) ,两国特键不但平衡较好, 而且平键高度较低,避免因齿轮键槽太深导致小齿轮轮毂厚度不够的问题。 6.6.46.6.4 润滑与密封润滑与密封 主轴转速高,必须保证充分润滑,一般常用单独的油管将油引到轴承处。 主轴是两端外伸的轴,防止漏油更为重要而困难。防漏的措施有两种: 1)堵加密封装置防止油外流。 主轴转速高,多采用非接触式的密封装置,形式很多,一种轴与轴承盖之间留 0.10.3的间mm 隙(间隙越小,密封效果越好,但工艺困难) 。还有一种是在轴承盖的孔内开一个或几个并列的沟槽 (圆弧形或形) ,效果比上一种好些。在轴上增开了沟槽(矩形或锯齿形) ,效果又比前两种好。v 铣床主轴箱设计铣床主轴箱设计 20 在有大量切屑、灰尘和冷却液的环境中工作时,可采用曲路密封,曲路可做成轴向或径向。径向 式的轴承盖要做成剖分式,较为复杂。 2)疏导在适当的地方做出回油路,使油能顺利地流回到油箱。 总结总结 这次课程设计用了三个星期,回想起来,花在画图的时间不多,主要还是 在设计计算上。能过本次课程设计,我不但巩固了旧的知识,如:机械设、 金属切削机床等。利用绘图软件绘图,而且学到了怎样设计变速箱,如何设 计每一个细节。 课程设计是一次知识综合的考验,要考虑的问题很多,一个人的能力三 周时间是不够的,我们通过讨论更加深一层俯了设计的过程。而且老师的指 导也是不可或缺的。 铣床主轴箱设计铣床主轴箱设计 21 主要参考文献 1 陈易新.金属切削机床课程设计指导书. 北京: 机械工业出版社, 1987.7 2 范云涨.金属切削机床设计简明手册. 北京: 机械工业出版社,1994.7 3 任殿阁.机床设计指导.辽宁:辽宁科学技术出版社,1991.1 4 翁世修.金属切削机床设计指导.上海:上海交通大学,1987.8
展开阅读全文