浦江县一中2018-2019学年上学期高二数学12月月考试题含解析

上传人:good****022 文档编号:116622855 上传时间:2022-07-06 格式:DOC 页数:18 大小:537.50KB
返回 下载 相关 举报
浦江县一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
第1页 / 共18页
浦江县一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
第2页 / 共18页
浦江县一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
第3页 / 共18页
点击查看更多>>
资源描述
浦江县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在ABC中,b=,c=3,B=30,则a=( )AB2C或2D22 已知数列的首项为,且满足,则此数列的第4项是( )A1 B C. D3 函数y=x+xlnx的单调递增区间是( )A(0,e2)B(e2,+)C(,e2)D(e2,+)4 已知集合,全集,则( )(A) ( B ) (C) (D) 5 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D46 根据中华人民共和国道路交通安全法规定:车辆驾驶员血液酒精浓度在2080mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车据法制晚报报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A2160B2880C4320D86407 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A(11,12)B(12,13)C(13,14)D(13,12)8 已知函数f(x)=3cos(2x),则下列结论正确的是( )A导函数为B函数f(x)的图象关于直线对称C函数f(x)在区间(,)上是增函数D函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到9 (+)2n(nN*)展开式中只有第6项系数最大,则其常数项为( )A120B210C252D4510 如果命题pq是真命题,命题p是假命题,那么( )A命题p一定是假命题B命题q一定是假命题C命题q一定是真命题D命题q是真命题或假命题11二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力12执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A9B11C13D15二、填空题13设A=x|x1或x3,B=x|axa+1,AB=B,则a的取值范围是14已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 15设Sn是数列an的前n项和,且a1=1, =Sn则数列an的通项公式an=16定义在R上的偶函数f(x)在0,+)上是增函数,且f(2)=0,则不等式f(log8x)0的解集是17如果实数满足等式,那么的最大值是 18若圆与双曲线C:的渐近线相切,则_;双曲线C的渐近线方程是_三、解答题19已知在四棱锥PABCD中,底面ABCD是边长为4的正方形,PAD是正三角形,平面PAD平面ABCD,E、F、G分别是PA、PB、BC的中点(I)求证:EF平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小20已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围21在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为:(t为参数)(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值22已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围23已知函数()若函数f(x)在区间1,+)内单调递增,求实数a的取值范围;()求函数f(x)在区间1,e上的最小值24已知点F(0,1),直线l1:y=1,直线l1l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H设点H的轨迹为曲线r()求曲线r的方程;()过点P作曲线r的两条切线,切点分别为C,D,()求证:直线CD过定点;()若P(1,1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由阿啊阿浦江县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:b=,c=3,B=30,由余弦定理b2=a2+c22accosB,可得:3=9+a23,整理可得:a23a+6=0,解得:a=或2故选:C2 【答案】B【解析】 3 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得f(x)=lnx+2,令f(x)0,可得xe2,函数f(x)的单调增区间是(e2,+)故选B4 【答案】C【解析】 ,故选C5 【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题6 【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:288000.15=4320故选C7 【答案】 A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答8 【答案】B【解析】解:对于A,函数f(x)=3sin(2x)2=6sin(2x),A错误;对于B,当x=时,f()=3cos(2)=3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x(,)时,2x(,),函数f(x)=3cos(2x)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x)=3co s(2x)的图象,这不是函数f(x)的图象,D错误故选:B【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目9 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项【解答】解:由已知(+)2n(nN*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项10【答案】D【解析】解:命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又命题“非p”也是假命题,命题p为真命题故命题q为可真可假故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键11【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A12【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答二、填空题13【答案】a0或a3 【解析】解:A=x|x1或x3,B=x|axa+1,且AB=B,BA,则有a+11或a3,解得:a0或a3,故答案为:a0或a314【答案】【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距离等于,小于圆的半径,所以点在圆内,所以当时,最小,此时,由点斜式方程可得,直线的方程为,即.考点:直线与圆的位置关系的应用.15【答案】 【解析】解:Sn是数列an的前n项和,且a1=1, =Sn,Sn+1Sn=Sn+1Sn,=1, =1,是首项为1,公差为1的等差数列,=1+(n1)(1)=nSn=,n=1时,a1=S1=1,n2时,an=SnSn1=+=an=故答案为:16【答案】(0,)(64,+) 【解析】解:f(x)是定义在R上的偶函数,f(log8x)0,等价为:f(|log8x|)f(2),又f(x)在0,+)上为增函数,|log8x|2,log8x2或log8x2,x64或0 x即不等式的解集为x|x64或0 x故答案为:(0,)(64,+)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键17【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.18【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1因为相切,所以所以双曲线C的渐近线方程是:故答案为:,三、解答题19【答案】 【解析】解:(I)证明:平面PAD平面ABCD,ABAD,AB平面PAD,E、F为PA、PB的中点,EFAB,EF平面PAD; (II)解:过P作AD的垂线,垂足为O,平面PAD平面ABCD,则PO平面ABCD取AO中点M,连OG,EO,EM,EFABOG,OG即为面EFG与面ABCD的交线又EMOP,则EM平面ABCD且OGAO,故OGEOEOM 即为所求 在RTEOM中,EM=OM=1tanEOM=,故EOM=60平面EFG与平面ABCD所成锐二面角的大小是60【点评】本题主要考察直线与平面垂直的判定以及二面角的求法解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角20【答案】 【解析】()解:椭圆的左,右焦点分别为F1(c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b=c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;()证明:设Q(x1,y1),R(x2,y2),F1(1,0),由RF1F2=PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t22=0,判别式=16k2t24(1+2k2)(2t22)0,即为t22k21x1+x2=,x1x2=,y1=kx1+t,y2=kx2+t,代入可得,(k+t)(x1+x2)+2t+2kx1x2=0,将代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2)即有直线l恒过定点(2,0)将t=2k代入,可得2k21,解得k0或0k则直线l的斜率k的取值范围是(,0)(0,)【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题21【答案】 【解析】解:(1)圆C的直角坐标方程为(x2)2+y2=2,代入圆C得:(cos2)2+2sin2=2化简得圆C的极坐标方程:24cos+2=0由得x+y=1,l的极坐标方程为cos+sin=1(2)由得点P的直角坐标为P(0,1),直线l的参数的标准方程可写成代入圆C得:化简得:,t10,t2022【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0 x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m23【答案】 【解析】解:(1)由已知得:f(x)=要使函数f(x)在区间1,+)内单调递增,只需0在1,+)上恒成立结合a0可知,只需a,x1,+)即可易知,此时=1,所以只需a1即可(2)结合(1),令f(x)=0得当a1时,由(1)知,函数f(x)在1,e上递增,所以f(x)min=f(1)=0;当时,此时在1,)上f(x)0,在上f(x)0,所以此时f(x)在上递减,在上递增,所以f(x)min=f()=1lna;当时,故此时f(x)0在1,e上恒成立,所以f(x)在1,e上递减,所以f(x)min=f(e)=【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法24【答案】 【解析】满分(13分)解:()由题意可知,|HF|=|HP|,点H到点F(0,1)的距离与到直线l1:y=1的距离相等,(2分)点H的轨迹是以点F(0,1)为焦点,直线l1:y=1为准线的抛物线,(3分)点H的轨迹方程为x2=4y(4分)()()证明:设P(x1,1),切点C(xC,yC),D(xD,yD)由y=,得直线PC:y+1=xC(xx1),(5分)又PC过点C,yC=,yC+1=xC(xx1)=xCx1,yC+1=,即(6分)同理,直线CD的方程为,(7分)直线CD过定点(0,1)(8分)()由()()P(1,1)在直线CD的方程为,得x1=1,直线CD的方程为设l:y+1=k(x1),与方程联立,求得xQ=(9分)设A(xA,yA),B(xB,yB)联立y+1=k(x1)与x2=4y,得x24kx+4k+4=0,由根与系数的关系,得xA+xB=4kxAxB=4k+4(10分)xQ1,xA1,xB1同号,+=|PQ|=(11分)=,+为定值,定值为2(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力第 18 页,共 18 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 等级考试


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!