合作市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

上传人:good****022 文档编号:116610385 上传时间:2022-07-06 格式:DOC 页数:16 大小:533.50KB
返回 下载 相关 举报
合作市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
第1页 / 共16页
合作市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
第2页 / 共16页
合作市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
第3页 / 共16页
点击查看更多>>
资源描述
合作市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=xexmx+m,若f(x)0的解集为(a,b),其中b0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是( )ABCD2 若函数f(x)=a(xx3)的递减区间为(,),则a的取值范围是( )Aa0B1a0Ca1D0a13 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力4 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)5 已知f(x)=x33x+m,在区间0,2上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是( )Am2Bm4Cm6Dm86 已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力7 曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x58 下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤9 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD10已知向量=(1,2),=(x,4),若,则x=( ) A 4 B 4 C 2 D 211把“二进制”数101101(2)化为“八进制”数是( )A40(8)B45(8)C50(8)D55(8)12函数y=2x2e|x|在2,2的图象大致为( )ABCD二、填空题13多面体的三视图如图所示,则该多面体体积为(单位cm)14函数()满足且在上的导数满足,则不等式的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.15已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值16【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)lnx (mR)在区间1,e上取得最小值4,则m_17已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 18若实数满足,则的最小值为 三、解答题19若函数f(x)=sinxcosx+sin2x(0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为的等差数列()求及m的值;()求函数y=f(x)在x0,2上所有零点的和20已知函数,()求函数的最大值;()若,求函数的单调递增区间21如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y26x91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线22已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围23已知椭圆的左右焦点分别为,椭圆过点,直线交轴于,且为坐标原点(1)求椭圆的方程;(2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点24已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn合作市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:设g(x)=xex,y=mxm,由题设原不等式有唯一整数解,即g(x)=xex在直线y=mxm下方,g(x)=(x+1)ex,g(x)在(,1)递减,在(1,+)递增,故g(x)min=g(1)=,y=mxm恒过定点P(1,0),结合函数图象得KPAmKPB,即m,故选:C【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题2 【答案】A【解析】解:函数f(x)=a(xx3)的递减区间为(,)f(x)0,x(,)恒成立即:a(13x2)0,x(,)恒成立13x20成立a0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决3 【答案】D【解析】4 【答案】C【解析】解: =f(x0),故选C【点评】本题考查了导数的几何意义,以及导数的极限表示形式,本题属于中档题5 【答案】C【解析】解:由f(x)=3x23=3(x+1)(x1)=0得到x1=1,x2=1(舍去)函数的定义域为0,2函数在(0,1)上f(x)0,(1,2)上f(x)0,函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m20 ;f(1)+f(1)f(2),即4+2m2+m由得到m6为所求故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间0,2上的最小值与最大值6 【答案】D【解析】,故选D.7 【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易8 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题9 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题10【答案】D【解析】: 解:,42x=0,解得x=2故选:D11【答案】D【解析】解:101101(2)=125+0+123+122+0+120=45(10)再利用“除8取余法”可得:45(10)=55(8)故答案选D12【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D二、填空题13【答案】cm3 【解析】解:如图所示,由三视图可知:该几何体为三棱锥PABC该几何体可以看成是两个底面均为PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:PCD的面积S=44=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=84=cm3,故答案为: cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键14【答案】【解析】构造函数,则,说明在上是增函数,且.又不等式可化为,即,解得.不等式的解集为.15【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题16【答案】3e【解析】f(x),令f(x)0,则xm,且当xm时,f(x)m时,f(x)0,f(x)单调递增若m1,即m1时,f(x)minf(1)m1,不可能等于4;若1me,即eme,即me时,f(x)minf(e)1,令14,得m3e,符合题意综上所述,m3e.17【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件18【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小三、解答题19【答案】 【解析】解:()f(x)=sinxcosx+sin2x=x+(1cos2x)=2x2x=sin(2x),依题意得函数f(x)的周期为且0,2=,=1,则m=1;()由()知f(x)=sin(2x),又x0,2,y=f(x)在x0,2上所有零点的和为【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题20【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()由已知当,即, 时,()当时,递增即,令,且注意到函数的递增区间为21【答案】 【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2当动圆与圆O2相内切时,有|O2M|=10R将两式相加,得|O1M|+|O2M|=12|O1O2|,动圆圆心M(x,y)到点O1(3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(3,0)、O2(3,0),长轴长等于12的椭圆2c=6,2a=12,c=3,a=6b2=369=27圆心轨迹方程为,轨迹为椭圆(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2108=0,整理得所以圆心轨迹方程为,轨迹为椭圆【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键22【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0 x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m23【答案】(1);(2)证明见解析.【解析】试题解析:(1),即;(2)设方程为代入椭圆方程,代入得:所以, 直线必过1考点:直线与圆锥曲线位置关系【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解24【答案】 【解析】解:(1)设等比数列an的公比为q,由a2是a1和a31的等差中项得:2a2=a1+a31,2q=q2,q0,q=2,;(2)n=1时,由b1+2b2+3b3+nbn=an,得b1=a1=1n2时,由b1+2b2+3b3+nbn=an b1+2b2+3b3+(n1)bn1=an1得:,【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题第 16 页,共 16 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 礼仪庆典


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!