高考数学函数专题习题及详细答案.doc

上传人:good****022 文档编号:116539496 上传时间:2022-07-05 格式:DOC 页数:10 大小:886.02KB
返回 下载 相关 举报
高考数学函数专题习题及详细答案.doc_第1页
第1页 / 共10页
高考数学函数专题习题及详细答案.doc_第2页
第2页 / 共10页
高考数学函数专题习题及详细答案.doc_第3页
第3页 / 共10页
点击查看更多>>
资源描述
函数专题练习1.函数的反函数是()A B C D2.已知是上的减函数,那么的取值范围是(A) (B) (C)(D)3.在下列四个函数中,满足性质:“对于区间上的任意,恒成立”的只有(A)(B) (C)(D)4.已知是周期为2的奇函数,当时,设则(A)(B)(C)(D)5.函数的定义域是A. B. C. D. 6、下列函数中,在其定义域内既是奇函数又是减函数的是A. B. C. D. 7、函数的反函数的图像与轴交于点(如右图所示),则方程在上的根是A.4 B.3 C. 2 D.18、设是R上的任意函数,则下列叙述正确的是 (A)是奇函数 (B)是奇函数 (C) 是偶函数 (D) 是偶函数9、已知函数的图象与函数的图象关于直线对称,则A BC D10、设(A)0 (B)1 (C)2 (D)311、对a,bR,记maxa,b,函数f(x)max|x1|,|x2|(xR)的最小值是(A)0 (B) (C) (D)312、关于的方程,给出下列四个命题:存在实数,使得方程恰有2个不同的实根;存在实数,使得方程恰有4个不同的实根;存在实数,使得方程恰有5个不同的实根;存在实数,使得方程恰有8个不同的实根;其中假命题的个数是A0 B1 C2 D3(一) 填空题(4个)1.函数对于任意实数满足条件,若则_。2设则_3.已知函数,若为奇函数,则_。4. 设,函数有最小值,则不等式的解集为 。(二) 解答题(6个)1. 设函数.(1)在区间上画出函数的图像;(2)设集合. 试判断集合和之间的关系,并给出证明;(3)当时,求证:在区间上,的图像位于函数图像的上方. 2、设f(x)3ax,f(0)0,f(1)0,求证:()a0且21;()方程f(x)0在(0,1)内有两个实根. 3. 已知定义域为的函数是奇函数。()求的值;()若对任意的,不等式恒成立,求的取值范围;4.设函数f(x)其中a为实数.()若f(x)的定义域为R,求a的取值范围;()当f(x)的定义域为R时,求f(x)的单减区间.5. 已知定义在正实数集上的函数,其中设两曲线,有公共点,且在该点处的切线相同(I)用表示,并求的最大值;(II)求证:()6. 已知函数,是方程f(x)0的两个根,是f(x)的导数;设,(n1,2,) (1)求的值; (2)证明:对任意的正整数n,都有a; (3)记(n1,2,),求数列bn的前n项和Sn。解答:一、选择题1解:由得:,所以为所求,故选D。解:依题意,有0a1且3a10,解得0a,又当x7a1,当x1时,logax11 |x1x2|故选A解:已知是周期为2的奇函数,当时,设,0,选D.解:由,故选B.解:B在其定义域内是奇函数但不是减函数;C在其定义域内既是奇函数又是增函数;D在其定义域内不是奇函数,是减函数;故选A.解:的根是2,故选C解:A中则,即函数为偶函数,B中,此时与的关系不能确定,即函数的奇偶性不确定,C中,即函数为奇函数,D中,即函数为偶函数,故选择答案D。解:函数的图象与函数的图象关于直线对称,所以是的反函数,即, ,选D.解:f(f(2)f(1)2,选C解:当x1时,|x1|x1,|x2|2x,因为(x1)(2x)3x1;当1x时,|x1|x1,|x2|2x,因为(x1)(2x)2x10,x12x;当xx2;故据此求得最小值为。选C解:关于x的方程可化为(1)或(1x1,所以不等式可化为x11,即x2.三、解答题解:(1) (2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此. 由于. (3)解法一 当时,. , . 又, 当,即时,取, . , 则. 当,即时,取, . 由 、可知,当时,. 因此,在区间上,的图像位于函数图像的上方. 解法二 当时,.由 得, 令 ,解得 或, 在区间上,当时,的图像与函数的图像只交于一点; 当时,的图像与函数的图像没有交点. 如图可知,由于直线过点,当时,直线是由直线绕点逆时针方向旋转得到. 因此,在区间上,的图像位于函数图像的上方. 2(I)证明:因为,所以.由条件,消去,得;由条件,消去,得,.故.(II)抛物线的顶点坐标为,在的两边乘以,得.又因为而所以方程在区间与内分别有一实根。故方程在内有两个实根.3解:()因为是奇函数,所以0,即 又由f(1) f(1)知 ()解法一:由()知,易知在上为减函数。又因是奇函数,从而不等式: 等价于,因为减函数,由上式推得:即对一切有:,从而判别式解法二:由()知又由题设条件得:,即:,整理得上式对一切均成立,从而判别式4解:()的定义域为,恒成立,即当时的定义域为(),令,得由,得或,又,时,由得;当时,;当时,由得,即当时,的单调减区间为;当时,的单调减区间为5解:()设与在公共点处的切线相同,由题意,即由得:,或(舍去)即有令,则于是当,即时,;当,即时,故在为增函数,在为减函数,于是在的最大值为()设,则故在为减函数,在为增函数,于是函数在上的最小值是故当时,有,即当时,6解析:(1),是方程f(x)0的两个根,; (2),有基本不等式可知(当且仅当时取等号),同,样,(n1,2,), (3),而,即,同理,又四、 创新试题解:依题意,有x150 x355x35,x1x3,同理,x230 x120 x110 x1x2,同理,x330 x235x25x3x2故选C2解:令c,则对任意的xR,都有f(x)f(xc)2,于是取,c,则对任意的xR,af(x)bf(xc)1,由此得。选。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 法律文献


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!