资源描述
特征方程法求数列的通项公式求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.1.已知数列满足. 其中.定义1:方程为的特征方程,该方程的根称为数列的特征根,记为.定理1:若且,则.证明: 证毕定理2: 若且,则.证明: 证毕例(09江西理22)各项均为正数的数列,且对满足的正数都有.(1)当时,求通项;(2)略.解:由得将代入上式化简得考虑特征方程得特征根所以所以数列是以为首项,公比为的等比数列故 即例 已知数列满足,求通项.解: 考虑特征方程得特征根所以数列是以为首项,公差为1的等差数列故 即例 已知数列满足,求数列的通项解:其特征方程为,化简得,解得,令 由得,可得,数列是以为首项,以为公比的等比数列,例已知数列满足,求数列的通项解:其特征方程为,即,解得,令 由得,求得,数列是以为首项,以为公差的等差数列,2.已知数列满足 其中为常数,且.定义2:方程为的特征方程,该方程的根称为数列的特征根,记为.定理3:若,则,其中常数,且满足.定理4: 若,则,其中常数,且满足.设,则,令 (*)(1) 若方程组(*)有两组不同的解,则, ,由等比数列性质可得, ,由上两式消去可得.(2) 若方程组(*)有两组相等的解,易证此时,则,,即是等差数列,由等差数列性质可知,所以例已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得, 例已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得, 例:已知数列满足,求通项.解: 考虑特征方程得特征根 则 其中常见递推数列通项的求解方法 高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。类型一:(可以求和)累加法(1)若f(n)为常数,即:,此时数列为等差数列,则=.(2)若f(n)为n的函数时,用累加法.方法如下: 由 得:时,所以各式相加得 即:.为了书写方便,也可用横式来写: 时,=.例、在数列中,已知=1,当时,有,求数列的通项公式。解析: 上述个等式相加可得: 评注:一般情况下,累加法里只有n-1个等式相加。例 . (2003天津文) 已知数列an满足,证明证明:由已知得: = .例.已知数列的首项为1,且写出数列的通项公式. 答案:例.已知数列满足,求此数列的通项公式. 答案: 评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。类型一专项练习题:1、已知,(),求。 2、已知数列,=2,=+3+2,求。 3、已知数列满足,求数列的通项公式。4、已知中,求。 5、已知,求数列通项公式. 6、 已知数列满足求通项公式?()7、若数列的递推公式为,则求这个数列的通项公式8、 已知数列满足,求数列的通项公式。9、已知数列满足,求。 10、数列中,(是常数,),且成公比不为的等比数列(I)求的值; c=2(II)求的通项公式 类型二: (可以求积)累积法(1)当f(n)为常数,即:(其中q是不为0的常数),此时数列为等比数列,=.(2)当f(n)为n的函数时,用累乘法. 由得 时,=f(n)f(n-1). 例.设是首项为1的正项数列,且(=1,2, 3,),则它的通项公式是=_.解:已知等式可化为:()(n+1), 即时,=.本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.例.已知,求数列an的通项公式.解:因为所以故又因为,即,所以由上式可知,所以,故由累乘法得 =所以-1.评注:本题解题的关键是把原来的递推关系式转化为若令,则问题进一步转化为形式,进而应用累乘法求出数列的通项公式.例在数列中,已知有,()求数列的通项公式。解析:又也满足上式; 类型二专项练习题:1、 已知,(),求。 2、已知数列满足,求。 3、已知中,且,求数列的通项公式.4、已知, ,求。 5、已知,求数列通项公式. 6、已知数列满足,求通项公式? () 7、已知数列满足,求数列的通项公式。8、已知数列an,满足a1=1, (n2),则an的通项 9、设an是首项为1的正项数列, 且(n + 1)a- na+an+1an = 0 (n = 1, 2, 3, ),求它的通项公式. 10、数列的前n项和为,且,求数列的通项公式. 类型三: (1)若(d为常数),则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n的函数(非常数)时,可通过构造转化为型,通过累加来求出通项;或用逐差法(两式相减)得,分奇偶项来分求通项.例. 数列满足,求数列an的通项公式.解法2:时,两式相减得:.构成以,为首项,以2为公差的等差数列;构成以,为首项,以2为公差的等差数列. 评注:结果要还原成n的表达式.例.(2005江西卷)已知数列an的前n项和Sn满足SnSn2=3求数列an的通项公式.解:方法一:因为以下同例1,略答案 类型四型(1)若(p为常数),则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n的函数(非常数)时,可通过逐差法得,两式相除后,分奇偶项来分求通项.例1. 已知数列,求此数列的通项公式.注:同上例类似,略.类型五: 待定常数法可将其转化为,其中,则数列为公比等于A的等比数列,然后求即可。(1)若c=1时,数列为等差数列;(2)若d=0时,数列为等比数列;(3)若时,数列为线性递推数列,其通项可通过待定系数法构造辅助数列来求.方法如下:设,得,与题设比较系数得,所以所以有:因此数列构成以为首项,以c为公比的等比数列,所以 即:.规律:将递推关系化为,构造成公比为c的等比数列从而求得通项公式有时我们从递推关系中把n换成n-1有,两式相减有从而化为公比为c的等比数列,进而求得通项公式. ,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.例 在数列中, ,当时,有,求数列的通项公式。解析:设,则,于是是以为首项,以3为公比的等比数列。例已知数列中,求通项.分析:两边直接加上,构造新的等比数列。解:由得,所以数列构成以为首项,以为公比的等比数列所以,即 . 方法二:迭代法由 递推式直接迭代得=.类型五专项练习题:1、 在数列中, ,求数列的通项公式。 2、若数列的递推公式为,则求这个数列的通项公式3、已知数列a中,a=1,a= a+ 1求通项a 4、在数列(不是常数数列)中,且,求数列的通项公式. 5、在数列an中,求. 6、已知数列满足求数列的通项公式. 7、设二次方程x-x+1=0(nN)有两根和,且满足6-2+6=3(1)试用表示a; (2)求证:数列是等比数列;(3)当时,求数列的通项公式 8、在数列中,为其前项和,若,并且,试判断是不是等比数列? 是类型六:(1)若(其中k,b是常数,且)方法:相减法例1. 在数列中,求通项.解:, 时,两式相减得 .令,则利用知即 再由累加法可得.亦可联立 解出.例2. 在数列中,,求通项.解:原递推式可化为比较系数可得:x=-6,y=9,上式即为所以是一个等比数列,首项,公比为. 即:故.(2)若(其中q是常数,且n0,1)若p=1时,即:,累加即可.若时,即:,求通项方法有以下三种方向:i. 两边同除以.即: ,令,则,然后类型1,累加求通项.ii.两边同除以 . 即: ,令,则可化为.然后转化为类型5来解,iii.待定系数法:设.通过比较系数,求出,转化为等比数列求通项.例1.(2003天津理)设为常数,且证明对任意1,;证法1:两边同除以(-2),得令,则=.证法2:由得 .设,则b. 即:,所以是以为首项,为公比的等比数列.则=,即:,故 .评注:本题的关键是两边同除以3,进而转化为类型5,构造出新的等比数列,从而将求一般数列的通项问题转化为求等比数列的通项问题.证法3:用待定系数法设, 即:,比较系数得:,所以 所以,所以数列是公比为2,首项为的等比数列. 即 .例 设在数列中, ,求数列的通项公式。解析:设 展开后比较得这时是以3为首项,以为公比的等比数列即,例 在数列中, ,求数列的通项公式。解析:,两边同除以得是以=1为首项,2为公差的等差数列。 即例 在数列中, ,求数列的通项公式。解析:在中,先取掉,得令,得,即;然后再加上得 ; 两边同除以,得是以为首项,1为公差的等差数列。, 评注:若中含有常数,则先待定常数。然后加上n的其它式子,再构造或待定。例 已知数列满足,求数列的通项公式。解析:在中取掉待定令,则, ;再加上得,整理得:,令,则令 ;即;数列是以为首项,为公比的等比数列。,即;整理得类型5专项练习题:1、设数列的前n项和,求数列的通项公式。 2、已知数列中,点在直线上,其中(1) 令求证:数列是等比数列;(2) 求数列的通项 ; 3、已知,求。 4、设数列:,求.5、已知数列满足,求通项6、在数列中,求通项公式。7、已知数列中,,,求。8、已知数列a,a=1, nN,a= 2a3 n ,求通项公式a9、已知数列满足,求数列的通项公式。10、若数列的递推公式为,则求这个数列的通项公式 11、已知数列满足,求. 12、 已知数列满足,求数列的通项公式。13、已知数列满足,求数列的通项公式。14、 已知,求。 15、 已知中,求. 16、已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设数列,求证:数列是等差数列;求数列的通项公式及前项和。类型七:1、已知数列中,,,求。2、 已知 a1=1,a2=,=-,求数列的通项公式.3、已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设数列,求证:数列是等差数列;求数列的通项公式及前项和。4、数列:, ,求数列的通项公式类型八:()1、若数列的递推公式为,则求这个数列的通项公式。2、已知数列满足时,求通项公式。3、已知数列an满足:,求数列an的通项公式。4、设数列满足求5、已知数列满足a1=1,求6、 在数列中,求数列的通项公式. 7、若数列a中,a=1,a= nN,求通项a类型九: 例 已知数列前n项和.求与的关系; (2)求通项公式.解析:时,得;时,;得。(2)在上式中两边同乘以得;是以为首项,2为公差的等差数列;得。类型九专项练习题:1、数列an的前N项和为Sn,a1=1,an+1=2Sn.求数列an的通项an。2、已知在正整数数列中,前项和满足,求数列的通项公式. 3、已知数列an的前n项和为Sn = 3n 2, 求数列an的通项公式. 4、设正整数an的前n项和Sn =,求数列an的通项公式. 5、如果数列an的前n项的和Sn =, 那么这个数列的通项公式是an = 23n6、已知无穷数列的前项和为,并且,求的通项公式? 类型十:周期型例1、若数列满足,若,则的值为_。解析:根据数列的递推关系得它的前几项依次为:;我们看出这个数列是一个周期数列,三项为一个周期;.评注:有些题目,表面看起来无从下手,但你归纳出它的前几项后,就会发现规律,出现周期性,问题就迎刃而解。类型八专项练习题:1、已知数列满足,则= ( B )A0BCD2、在数列中, -4类型十一、利用数学归纳法求通项公式例1 已知数列满足,求数列的通项公式。解析:根据递推关系和得,所以猜测,下面用数学归纳法证明它;时成立(已证明)假设时,命题成立,即,则时,=。时命题成立;由可知命题对所有的均成立。评注:归纳、猜想数学归纳法证明是我们必须掌握的一种方法。类型九专项练习题:1. 设数列满足:,且,则的一个通项公式为 ,2、已知是由非负整数组成的数列,满足,(n=3,4,5)。(1)求; 2(2)证明(n=3,4,5);(数学归纳法证明)(3)求的通项公式及前n项的和。; 3、已知数列中=,。(1) 计算,。 (2) 猜想通项公式,并且数学归纳法证明。递推数列的通项公式的求法,虽无固定模式,但也有规律可循;主要靠观察分析、累加、累积、待定系数法,或是转化为等差或等比数列的方法解决;再或是归纳、猜想、用数学归纳法证明的方法来解决,同学们应归纳、总结它们的规律,通过练习,巩固掌握它。类型十二. (其中p,r为常数)型(1)p0, 用对数法.例. 设正项数列满足,(n2).求数列的通项公式.解:两边取对数得:,设,则 是以2为公比的等比数列, ,练习 数列中,(n2),求数列的通项公式. 答案:(2)p0时 用迭代法.例.(2005江西卷)已知数列,(1)证明 (2)求数列的通项公式an.解:(1)略(2)所以 又bn=1,所以.方法2:本题用归纳-猜想-证明,也很简捷,请试一试.解法3:设c,则c,转化为上面类型(1)来解.21
展开阅读全文