运动系统课程设计--双闭环V-M调速系统中主电路电流调节器及转速调节器的设计.doc

上传人:good****022 文档编号:116534930 上传时间:2022-07-05 格式:DOC 页数:23 大小:903.20KB
返回 下载 相关 举报
运动系统课程设计--双闭环V-M调速系统中主电路电流调节器及转速调节器的设计.doc_第1页
第1页 / 共23页
运动系统课程设计--双闭环V-M调速系统中主电路电流调节器及转速调节器的设计.doc_第2页
第2页 / 共23页
运动系统课程设计--双闭环V-M调速系统中主电路电流调节器及转速调节器的设计.doc_第3页
第3页 / 共23页
点击查看更多>>
资源描述
电机及其运动控制系统课程设计说明书题目:双闭环V-M调速系统中主电路电流调节器及转速调节器的设计 学院: 自动化学院 专业: 自动化 姓名: 学号: 指导教师: 潘月斗 2013年11月20日 摘 要本设计简单介绍了双闭环调速系统的原理和动态结构,并基于相关原理,根据设定的电机参数等已知条件和要求按工程设计方法对双闭环调速系统主回路、转速调节器(ASR)和电流调节器(ACR)及其限幅电路进行设计,并对该系统的调节器有关参数进行了计算。最终完成了双闭环V-M调速系统的主电路以及电流、转速调节器的设计,并用Simulink进行了仿真验证,总结了设计心得。关键词:双闭环;调速系统;ASR;ACR;设计;计算;Simulink仿真 目 录摘 要2课程设计任务书4一、设计题目4二、具体内容4三、已知条件及直流电机相关参数4四、设计要求5引 言51. 双闭环调速系统61.1 概述61.2 系统组成及原理71.3 系统的静特性与动特性82.系统各环节设计及参数计算92.1 电流环的设计92.2 转速环的设计113. 系统主回路及控制电路设计133.1 双闭环调速系统主回路电路133.2 双闭环调速系统控制电路133.2.1 转速给定器(G)133.2.2 转速调节器(ASR)143.2.5 电流调节器(ACR)153.2.6 电流互感器(TA)163.2.7 触发器(GT)163.2.8 转速变速器(FBS)173.2.9 直流稳压电源(DC RPS)184. Simulink仿真184.1 仿真模型的建立184.2 仿真波形196. 设计心得217. 参考文献23 课程设计任务书一、设计题目双闭环V-M调速系统中主电路电流调节器及转速调节器的设计二、具体内容(1)主回路及其保护系统的设计;(2)转速、电流调节器及其限幅电路的设计;三、已知条件及直流电机相关参数采用晶闸管三相桥式全控整流电路供电,基本数据如下:直流电动机=220V,=136A,=1460r/min,电枢电阻=0.2,允许过载倍数=1.5;晶闸管装置=0.00167s,放大系数=40;平波电抗器:电阻、电感;电枢回路总电阻R=0.5;电枢回路总电感L=15mH;电动机轴上的总飞轮惯量GD2=22.5Nm2;电流调节器最大给定值=10.2V,转速调节器最大给定值=10.5V;电流滤波时间常数=0.002s,转速滤波时间常数=0.01s。设计要求:1.稳态指标:转速无静差;2.动态指标:电流超调量;空载启动到额定转速的转速超调量。四、设计要求1.写出设计说明书,内容包括(1)各主要环节的工作原理;(2)整个系统的工作原理;(3)调节器参数的计算过程。2.画出一张详细的电气原理图3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 引 言电机自动控制系统广泛应用于机械、矿冶、石油、化工、纺织和军工等行业,这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机从而提高其运行性能对国民经济具有十分重要的现实意义。自上个世纪40年代以来约半个世纪的时间里,直流电动机几乎是唯一能实现高性能拖动控制的电动机,其定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动、制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选,因为它具有良好的线性特性、优异的控制性能和高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。本课程设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到参数指标要求的电力拖动系统的调节器,并应用MATLAB软件中的Simulink模块对设计的系统进行仿真和校正以最终满足预设指标的目的。采用转速负反馈和PI调节的单闭环调速系统可以实现转速的无静差,如果附带电流截止负反馈作限流保护则可以限制电流的冲击,但并不能控制电流的动态波形。我们希望系统在启动时,一直能有电机过载能力允许条件下的最大电流,电机有最大的启动转矩和最短的启动时间,这一点利用单一的电流截止负反馈是很难实现的。此外,在单闭环调速系统中,用一个调节器综合多种信号,使各参数间相互影响,将导致难于进行调节器的参数调控。例如,在带电流截止负反馈的转速负反馈的单闭环系统中,同一调节器担负着正常负载时的速度调节和过载时的电流调节,调节器的动态参数无法保证两种调节过程均具有良好的动态品质。为了解决单闭环调速系统存在的问题,可以采用转速、电流串级调速系统,即转速电流双闭环调速系统,采用两个调节器分别对转速和电流进行调节。这就是本次课程设计需要完成的任务。1. 双闭环调速系统1.1 概述在许多应用场合,为了充分发挥生产机械的效能提高生产率,速度控制系统经常处于起动、制动、反转以及突加负载等过渡过程中,所以要求速度控制系统有较好的动态性能。对高性能、静态的速度控制系统的要求是具有快速跟随特性(起制性)、较好的抗干扰性和高可靠性(可瞬态过载但不过电流)。因此引入了转速、电流双闭环调速体统。转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。转速负反馈和比例积分调节器的单闭环调速系统能够保证系统在稳定的条件下实现转速无静差调节,但是该控制系统也有自身的缺点,比如要求快速启动、突加负载动态速降等。将电流截止负反馈环节与转速负反馈调速系统结合在一起,可以专门用来控制电流。从工作原理上分析,它只能是在超过临界电流值以后,才能靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。由于电流截止负反馈只能限制最大电流,电机转矩也随电流的减小而下降,使启动加速过程变慢,启动的时间也比较长,所以在工业生产中,如龙门刨床、可逆轧钢机等要求经常正反转运行的调速系统为了提高生产效率和加工质量,要求尽量缩短起、制动过程的时间。为了能实现在允许条件下最快启动,依照反馈控制规律,经论证与实践,采用转速、电流双闭环调速系统就能达到上述要求。1.2 系统组成及原理为了实现转速和电流两种负反馈分别起作用,在系统中设置两个调节器,分别调节转速和电流即分别引入转速负反馈和电流负反馈。二者之间实行嵌套链接,如图1所示为转速、电流双闭环调速系统的结构原理图。图中两个调节器ASR和ACR分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。电流环在内,称之为内环;转速环在外,称之为外环,这就形成了转速、电流双闭环调速系统。为获得良好的静、动态性能,转速和电流两个调节器一般采用PI调节器,这样就构成了双闭环直流调速系统的电路原理图如图2所示。两个调节器输出都带有限幅,ASR的输出限幅Uim决定了电流调节器ACR的给定电压最大值Uim;电流调节器ACR输出限幅电压Ucm限制了整流器输出最大电压值和最小触发角。1.3 系统的静特性与动特性静特性:在正常负载情况下,转速调节器不饱和,电流调节器也不饱和。稳态时,依靠调节器的调节作用,它们的输入电压偏差电压都是零,因此,系统具有绝对硬的静特性。当电动机的负载电流上升时,转速调节器的输出也将上升,当Id上升到一定数值时,转速调节器的输出达到限幅值,转速环失去调节作用,呈开环状态,速度的变化对系统不再产生那个影响,此时只剩下电流环起作用。双闭环直流调速系统稳态结构图如图3所示:动特性:双闭环调速系统的动态结构如图4所示,由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数Toi按需要选定。滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来了延滞。为了平衡这一延滞作用,在给定信号通道中加入一个相同时间常数的惯性环节,称作给定滤波环节。其作用是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,滤波时间常数用Ton表示。根据和电流环一样的道理,在转速给定通道中也配上时间常数为Ton的给定滤波环节。2.系统各环节设计及参数计算2.1 电流环的设计(1)确定时间常数电流环小时间常数:由于已给,因此=+=0.00367s;电枢回路时间常数:=L/R=0.015/0.5=0.03s。(2)确定电流调节器结构和参数结构选择根据性能指标要求: , ,抗干扰性能适中,因此电流环按典型型系统设计,调节器选用PI,其传递函数为参数计算 ,为了将电流环校正成典型I型系统,i应对消控制对象中的大惯性环节时间常数T1,即取i=T1=0.03s;为了满足i5%的要求,应取Kop,iTi=0.5,因此,有Kop,i=1/2Ti=1/2*0.00367=136.2s-1于是可以求得ACR的比例放大系数为Ki=Kop,iiR/Ks=136.2*0.03*0.5/0.05*40=1.022校验近似条件:a晶闸管整流装置传递函数近似条件wci1/3Ts,wci= Kop,i=136.2s-1,而1/3Ts=199.6s-1显然满足近似条件;b电流环小时间常数近似处理条件wci 1/3(1/TsToi)1/2,而1/3(1/TsToi)1/2=182.4s-1 wci,显然也满足近似条件。忽略反电动势对电流环影响的条件 由于,;所以,;因此,。查表1(典型型系统参数与动态跟随性能指标的关系),设计后电流环可以达到的动态指标为=4.3%5%,满足设计要求。表1 典型型系统参数与动态跟随性能指标的关系参数关系KT0.250.310.390.50.691.01.56足迹系数1.00.90.80.7070.60.50.4上升时间11.1T6.66T4.71T3.32T2.42T1.73T超调量00.15%1.52%4.43%9.4816.3%25.4%截止频率0.243/T0.299/T0.367/T0.455/T0.596/T0.786/T1.068/T相角裕量2.2 转速环的设计(1)确定时间常数电流环等效时间常数:由于电流环按典型型系统设计,且参数选择为Kop,i, Ti=0.5,因此电流环等效时间常数为2 Ti=20.00367=0.00734s。转速环小时间常数Tn:已知转速滤波时间常数为Ton=0.01s ,因此转速环小时间常数Tn=2 Ti+Ton=0.00734+0.01=0.01734s。(2)确定转速调节器结构和参数结构选择由于设计要求无静差,因此转速调节器必须含有积分环节,又考虑到动态要求,转速调节器应采用PI调节器,按典型型系统设计转速环。转速调节器的传递函数为参数计算综合考虑动态抗扰性能和起动动态性能,取中频宽h=5较好,ASR的超前时间常数为,转速开环放大系数为 于是转速调节器的比例放大系数为 (3) 校验近似条件和性能指标而,满足等效条件;转速环小时间常数近似处理条件,此时满足近似处理条件。转速超调量为同时,有 ,取中频宽为,取。因此能够满足设计要求。(4) ACR和ASR的传递函数 3. 系统主回路及控制电路设计3.1 双闭环调速系统主回路电路双闭环调速系统主回路电路见图5所示,其实质上就是一个三相桥式整流电路,通过该电路,三相交流电源被整流成为可供直流电机负载运行的直流电源。UWV图5 双闭环调速系统主回路电路图3.2 双闭环调速系统控制电路3.2.1 转速给定器(G)转速给定器电路见图7所示,其由两个保护电阻R1与R2、两个电位器R3与R4及两个单刀双掷开关J1与J2组成;电位器R3与R4分别用来调节正负电压的大小,从而改变给定电压即给定转速的大小;单刀双掷开关J1控制给定电压的正负,即控制电机的正反转速;J2则用于控制运行与停止。图6 转速给定器电路图3.2.2 转速调节器(ASR)转速调节器电路见图7所示,转速调节器 ASR 的功能是对给定和反馈两个输入量进行加法、减法、比例、积分和微分等运算,使其输出按某一规律变化。 它由运算放大器,输入与反馈网络及二极管限幅环节组成。转速调节器采用电路运算放大器,它具有两个输入端,同相输入端和反相输入端,其转速调节器 ASR 也可当作电压调节器 AVR 来使用,输出电压与两个输入端电压之差成正比。电路运算放大器具有开环放大倍数大,零点漂移小,线性度好,输入电流极小和输出阻抗小等优点,可以构成理想的调节器。图7 转速调节器电路图3.2.5 电流调节器(ACR)电流调节器电路见图8所示,其适用于可控制传动系统中,对其输入信号(给定量和反馈量)可进行加法、减法、比例、积分、微分和延时等运算或者同时兼做上述几种运算以使其输出量按某种预定规律变化。电流调节器由以下几部分组成:运算放大器,二极管限幅、输入阻抗网络、反馈阻抗网络等。图8 电流调节器电路图3.2.6 电流互感器(TA)电流互感器电路如图9所示,本系统中的电流互感器采用不完全星形接线,用于测量显三相三线电力装置中的三相电流。WVU图9 电流互感器电路图3.2.7 触发器(GT)触发器电路见图10所示,采用集成触发器。集成触发电路具有可靠性高,技术性能好,体积小,功耗低,调试方便等优点。晶闸管触发电路的集成化已逐渐普及,已逐步取代分立式电路。 图10 触发器电路图 3.2.8 转速变速器(FBS)转速变换器电路如图11所示,其用于转速反馈的调速系统中,将直流测速发电机的输出电压变换成适用于控制单元并与转速成正比的直流电压作为速度反馈。 图11 转速变换器电路图3.2.9 直流稳压电源(DC RPS)7815直流稳压电源电路如图12所示,其由三相交流电经整流和稳压所得,用于双闭环直流调速系统中所有需要15V直流电源的器件。图12 直流稳压电源电路图4. Simulink仿真4.1 仿真模型的建立进入MATLAB,单击MATLAB命令窗口工具栏中的Simulink图标,打开Simulink模块浏览器窗口。打开模型编辑窗口,选中所需的子模块,拖入模型编辑窗口。双击模块图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数,模块中需要修改的相关参数由前部分中计算所得。完成了对模块参数的调整后就可以根据双闭环直流调速系统的动态结构图对各模块予以连接,完整的仿真模型如图13所示。4.2 仿真波形电机启动时,仿真的电流曲线、转速曲线分别如图14、15、16。由图易见,满足转速超调量,电流超调量。由Simulink仿真的波形来看,各个环节参数的设计和校正是较为合理的,综上可以认为,双闭环V-M调速系统中主电路电流调节器及转速调节器的设计满足了设计要求。 图13 电流环电流图 图15 电流曲线图 图16 转速曲线图6. 设计心得本人此次负责总体设计,查阅了各种相关资料和比对了多种类型的相似电路。对于主控电路,在实际应用中已经有了较为成熟的设计,以三相桥式全控整流电路为主,故此次也选择了该方案。对于控制电路,先根据双闭环直流调速系统的基本结构,结合实际应用中对关键电气参数的要求,完善出实用的电气结构,作出结构图,对具有特定功能的部件进行模块化,以方便下一步对每一模块功能的设计。虽然查阅了很多资料,但由于对双闭环直流调速的设计多停留在理论设计环节,给出的具体实现调节控制的电路较少,完成每一个模块控制器件的设计还是具有一定难度的。通过寻找成熟的原理电路,结合本系统的具体需要和自己的理解,我选择并修改了查找到的类似功能电路,使得其更适用于本系统。在设计完成后,听取了本组成员的意见,对电机控制电路的功能进行了改进和完善,并用multisim对所有电路图进行了绘制。本次课程设计我学到了很多新的东西,极大地拓宽了知识面,锻炼了能力,综合素质得到较大提高,感到收获不小。同时也发现了大量问题,有些在设计过程中已经解决,有些还要待今后慢慢学习,只要学习就会有更多的问题,有更多的难点,但也会有更多的收获。总之,课程设计作为一种教学方式,巩固了我们课堂上所学的知识,提高了我们对知识学习的热情,锻炼了我们运用知识解决实际问题的能力,让我们收获了很多。由于本人水平有限,所设计的系统可能有不当之处,恳请老师不吝指正。7. 参考文献1陈伯时电力拖动自动控制系统运动控制系统(第3版)机械工业出版社,20032李华德等电力拖动控制系统(运动控制系统)电子工业出版社,20063阮毅,陈维钧运动控制系统清华大学出版社,20063王鉴光电机控制系统机械工业出版社,19944王兆安,刘进军电力电子技术(第5版)机械工业出版社,20115张志涌等精通MATLAB R2011a北京航空航天大学出版社,20116曾军,方厚辉神经网络PID 控制及其MATLAB 仿真现代电子技术,2004,27(2):51-527张泽旭神经网络控制与MATLAB 仿真哈尔滨工业大学出版社,2011
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 金融资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!