解直角三角形2017中考题.doc

上传人:good****022 文档编号:116533918 上传时间:2022-07-05 格式:DOC 页数:57 大小:1.83MB
返回 下载 相关 举报
解直角三角形2017中考题.doc_第1页
第1页 / 共57页
解直角三角形2017中考题.doc_第2页
第2页 / 共57页
解直角三角形2017中考题.doc_第3页
第3页 / 共57页
点击查看更多>>
资源描述
2017年11月28日yuz*cai4的初中数学组卷一解答题(共40小题)1小明在某次作业中得到如下结果:sin27+sin2830.122+0.992=0.9945, sin222+sin2680.372+0.932=1.0018,sin229+sin2610.482+0.872=0.9873, sin237+sin2530.602+0.802=1.0000,sin245+sin245=()2+()2=1据此,小明猜想:对于任意锐角,均有sin2+sin2(90)=1()当=30时,验证sin2+sin2(90)=1是否成立;()小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例2某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,C=90,ABE=90,BAE=30(1.4,1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数)3把(sin)2记作sin2,根据图1和图2完成下列各题(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;(2)观察上述等式猜想:在RtABC中,C=90,总有sin2A+cos2A= ;(3)如图2,在RtABC中证明(2)题中的猜想:(4)已知在ABC中,A+B=90,且sinA=,求cosA4如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80(FGK=80),身体前倾成125(EFG=125),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin800.98,cos800.17,1.41,结果精确到0.1)5美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量如图,测得DAC=45,DBC=65若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin650.91,cos650.42,tan652.14)6如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米已知小汽车车门宽AO为1.2米,当车门打开角度AOB为40时,车门是否会碰到墙?请说明理由(参考数据:sin400.64;cos400.77;tan400.84)7A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地现计划开凿隧道A,B两地直线贯通,经测量得:CAB=30,CBA=45,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:1.414,1.732)8如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得=30,=45,量得BC长为100米求河的宽度(结果保留根号)9如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知B=30,C=45(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由(参考数据:1.7,1.4)10如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,BOD=70,求端点A到地面CD的距离(精确到0.1m)(参考数据:sin700.94,cos700.34,tan702.75)11“兰州中山桥“位于兰州滨河路中段白塔山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥“之美誉它像一部史诗,记载着兰州古往今来历史的变迁桥上飞架了5座等高的弧形钢架拱桥 小芸和小刚分别在桥面上的A,B两处,准备测量其中一座弧形钢架拱梁顶部C处到桥面的距离AB=20m,小芸在A处测得CAB=36,小刚在B处测得CBA=43,求弧形钢架拱梁顶部C处到桥面的距离(结果精确到0.1m)(参考数据sin360.59,cos360.81,tan360.73,sin430.68,cos430.73,tan430.93)12如图,建设“幸福西宁”,打造“绿色发展样板城市”美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC上的A,B两点分别对南岸的体育中心D进行测量,分别测得DAC=30,DBC=60,AB=200米,求体育中心D到湟水河北岸AC的距离约为多少米(精确到1米,1.732)?13如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角FHE=60,求篮框D到地面的距离(精确到0.01米)(参考数据:cos750.2588,sin750.9659,tan753.732,1.732,1.414)14如图,游客在点A处坐缆车出发,沿ABD的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,=75,=45,求DE的长(参考数据:sin750.97,cos750.26,1.41)15如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象已知A,B两点相距8米,探测线与地面的夹角分别是30和45,试确定生命所在点C的深度(结果保留根号)16如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70角,请你用测得的数据求A,B两地的距离AB长(结果用含非特殊角的三角函数和根式表示即可)17如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C的距离相等,测得A=30,D=45,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离(结果保留根号)18如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?19如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为20,而当手指接触键盘时,肘部形成的“手肘角”约为100图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm请判断此时是否符合科学要求的100?(参考数据:sin69,cos21,tan20,tan43,所有结果精确到个位)20王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示已知AC=20cm,BC=18cm,ACB=50,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由(提示:sin500.8,cos500.6,tan501.2)21位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像铜像由像体AD和底座CD两部分组成如图,在RtABC中,ABC=70.5,在RtDBC中,DBC=45,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.50.943,cos70.50.334,tan70.52.824)22“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中ABCD,AMBNED,AEDE,请根据图中数据,求出线段BE和CD的长(sin370.60,cos370.80,tan370.75,结果保留小数点后一位)23贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角CAD=60,求第二次施救时云梯与水平线的夹角BAD的度数(结果精确到1)24某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,BAC=CDE=30,DE=80cm,AC=165cm(1)求支架CD的长;(2)求真空热水管AB的长(结果保留根号)25如图,某商店营业大厅自动扶梯AB的倾斜角为31,AB的长为12米,求大厅两层之间的距离BC的长(结果精确到0.1米)(参考数据:sin31=0.515,cos31=0.857,tan31=0.60)26如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30,在B处测得探测线与地面的夹角为60,求该生命迹象C处与地面的距离(结果精确到0.1米,参考数据:1.41,1.73)27如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角为60,根据有关部门的规定,39时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin390.63,cos390.78,tan390.81,1.41,1.73,2.24)28为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,EAC=130,求水坝原来的高度BC(参考数据:sin500.77,cos500.64,tan501.2)29图1是太阳能热水器装置的示意图利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角()确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,ABBC,垂足为点B,EAAB,垂足为点A,CDAB,CD=10cm,DE=120cm,FGDE,垂足为点G(1)若=3750,则AB的长约为 cm;(参考数据:sin37500.61,cos37500.79,tan37500.78)(2)若FG=30cm,=60,求CF的长30如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌当太阳光线与水平线成60角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高(结果不取近似值)31金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:1.41,1.73)32如图,某数学兴趣小组要测量一栋五层居民楼CD的高度该楼底层为车库,高2.5米;上面五层居住,每层高度相等测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60,在B处测得四楼顶部点E的仰角为30,AB=14米求居民楼的高度(精确到0.1米,参考数据:1.73)33如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角EOA=30,在OB的位置时俯角FOB=60,若OCEF,点A比点B高7cm求:(1)单摆的长度(1.7);(2)从点A摆动到点B经过的路径长(3.1)34如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34,45,其中点O,A,B在同一条直线上求A,B两点间的距离(结果精确到0.1km)(参考数据:sin34=0.56,cos34=0.83,tan34=0.67)35某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24,这时测得小军的眼睛距地面的高度AC为1米请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米)(参考数据:sin230.3907,cos230.9205,tan230.4245,sin240.4067,cos240.9135,tan240.4452)36如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45,顶部的仰角为37,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m)参考值:sin37=0.60,cos37=0.80,tan37=0.7537热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为45,看这栋楼底部C的俯角为60,热气球与楼的水平距离为100m,求这栋楼的高度(结果保留根号)38如图,小明在A处测得风筝(C处)的仰角为30,同时在A正对着风筝方向距A处30米的B处,小明测得风筝的仰角为60,求风筝此时的高度(结果保留根号)39如图,AB是某景区内高10m的观景台,CD是与AB底部相平的一座雕像(含底座),在观景台顶A处测得雕像顶C点的仰角为30,从观景台底部B处向雕像方向水平前进6m到达点E,在E处测得雕像顶C点的仰角为60,已知雕像底座DF高8m,求雕像CF的高(结果保留根号)40阅读材料:一般地,当、为任意角时,tan(+)与tan()的值可以用下面的公式求得:tan()=例如:tan15=tan(4530)=2根据以上材料,解决下列问题:(1)求tan75的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔文峰塔的木塔年久倾毁,仅存塔基1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁塔的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度(精确到1米,参考数据1.732,1.414)2017年11月28日yuz*cai4的初中数学组卷参考答案与试题解析一解答题(共40小题)1(2017福建)小明在某次作业中得到如下结果:sin27+sin2830.122+0.992=0.9945,sin222+sin2680.372+0.932=1.0018,sin229+sin2610.482+0.872=0.9873,sin237+sin2530.602+0.802=1.0000,sin245+sin245=()2+()2=1据此,小明猜想:对于任意锐角,均有sin2+sin2(90)=1()当=30时,验证sin2+sin2(90)=1是否成立;()小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例【解答】解1:(1)当=30时,sin2+sin2(90)=sin230+sin260=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在ABC中,C=90,设A=,则B=90,sin2+sin2(90)=()2+()2=12(2017湘潭)某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,C=90,ABE=90,BAE=30(1.4,1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数)【解答】解:(1)在RtABE中,BAE=30,BE=AE=80=40(米);(2)在RtABE中,BAE=30,AEB=9030=60,CED=AEB=60,在RtCDE中,DE=40(米),则BD=DE+BE=40+40=80(米)3(2017黔西南州)把(sin)2记作sin2,根据图1和图2完成下列各题(1)sin2A1+cos2A1=1,sin2A2+cos2A2=1,sin2A3+cos2A3=1;(2)观察上述等式猜想:在RtABC中,C=90,总有sin2A+cos2A=1;(3)如图2,在RtABC中证明(2)题中的猜想:(4)已知在ABC中,A+B=90,且sinA=,求cosA【解答】解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,sin2A3+cos2A3=()2+()2=+=1,故答案为:1、1、1;(2)观察上述等式猜想:在RtABC中,C=90,总有sin2A+cos2A=1,故答案为:1;(3)在图2中,sinA=,cosA=,且a2+b2=c2,则sin2A+cos2A=()2+()2=+=1,即sin2A+cos2A=1;(4)在ABC中,A+B=90,C=90,sin2A+cos2A=1,()2+cosA2=1,解得:cosA=或cosA=(舍),cosA=4(2017舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80(FGK=80),身体前倾成125(EFG=125),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin800.98,cos800.17,1.41,结果精确到0.1)【解答】解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80,FN=100sin8098,EFG=125,EFM=18012510=45,FM=66cos45=3346.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm5(2017白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量如图,测得DAC=45,DBC=65若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin650.91,cos650.42,tan652.14)【解答】解:过点D作DEAC,垂足为E,设BE=x,在RtDEB中,DBC=65,DE=xtan65 又DAC=45,AE=DE132+x=xtan65,解得x115.8,DE248(米) 观景亭D到南滨河路AC的距离约为248米6(2017台州)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米已知小汽车车门宽AO为1.2米,当车门打开角度AOB为40时,车门是否会碰到墙?请说明理由(参考数据:sin400.64;cos400.77;tan400.84)【解答】解:过点A作ACOB,垂足为点C,在RtACO中,AOC=40,AO=1.2米,AC=sinAOCAO0.641.2=0.768,汽车靠墙一侧OB与墙MN平行且距离为0.8米,车门不会碰到墙7(2017淮安)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地现计划开凿隧道A,B两地直线贯通,经测量得:CAB=30,CBA=45,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:1.414,1.732)【解答】解:过点C作CDAB与D,AC=20km,CAB=30,CD=AC=20=10km,AD=cosCABAC=cos3020=10km,CBA=45,BD=CD=10km,BC=CD=1014.14kmAB=AD+BD=10+1027.32km则AC+BCAB20+14.1427.326.8km答:从A地到B地的路程将缩短6.8km8(2017宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得=30,=45,量得BC长为100米求河的宽度(结果保留根号)【解答】解:过点A作ADBC于点D,=45,ADC=90,AD=DC,设AD=DC=xm,则tan30=,解得:x=50(+1),答:河的宽度为50(+1)m9(2017德州)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知B=30,C=45(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由(参考数据:1.7,1.4)【解答】解:(1)如图作ADBC于D则AD=10m,在RtACD中,C=45,AD=CD=10m,在RtABD中,B=30,tan30=,BD=AD=10m,BC=BD+DC=(10+10)m(2)结论:这辆汽车超速理由:BC=10+1027m,汽车速度=30m/s=108km/h,10880,这辆汽车超速10(2017丽水)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,BOD=70,求端点A到地面CD的距离(精确到0.1m)(参考数据:sin700.94,cos700.34,tan702.75)【解答】解:作AECD于E,BFAE于F,则四边形EFBC是矩形,ODCD,BOD=70,AEOD,A=BOD=70,在RtAFB中,AB=2.7,AF=2.7cos702.70.34=0.918,AE=AF+BC0.918+0.15=1.0681.1m,答:端点A到地面CD的距离是1.1m11(2017兰州)“兰州中山桥“位于兰州滨河路中段白塔山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥“之美誉它像一部史诗,记载着兰州古往今来历史的变迁桥上飞架了5座等高的弧形钢架拱桥 小芸和小刚分别在桥面上的A,B两处,准备测量其中一座弧形钢架拱梁顶部C处到桥面的距离AB=20m,小芸在A处测得CAB=36,小刚在B处测得CBA=43,求弧形钢架拱梁顶部C处到桥面的距离(结果精确到0.1m)(参考数据sin360.59,cos360.81,tan360.73,sin430.68,cos430.73,tan430.93)【解答】解:过点C作CDAB于D设CD=x,在RtADC中,tan36=,AD=,在RtBCD中,tanB=,BD=,+=20,解得x=8.1798.2m答:拱梁顶部C处到桥面的距离8.2m12(2017西宁)如图,建设“幸福西宁”,打造“绿色发展样板城市”美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC上的A,B两点分别对南岸的体育中心D进行测量,分别测得DAC=30,DBC=60,AB=200米,求体育中心D到湟水河北岸AC的距离约为多少米(精确到1米,1.732)?【解答】解:过点D作DHAC于点HHBD=DAC+BDA=60,而DAC=30,BDA=DAC=30,AB=DB=200在直角BHD中,sin60=,DH=1001001.732173答:体育中心D到湟水河北岸AC的距离约为173米13(2017常德)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角FHE=60,求篮框D到地面的距离(精确到0.01米)(参考数据:cos750.2588,sin750.9659,tan753.732,1.732,1.414)【解答】解:延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75=0.603.732=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60,sinFAG=,sin60=,FG=2.17,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米14(2017安徽)如图,游客在点A处坐缆车出发,沿ABD的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,=75,=45,求DE的长(参考数据:sin750.97,cos750.26,1.41)【解答】解:在RtABC中,AB=600m,ABC=75,BC=ABcos756000.26156m,在RtBDF中,DBF=45,DF=BDsin45=6003001.41423,四边形BCEF是矩形,EF=BC=156,DE=DF+EF=423+156=579m答:DE的长为579m15(2017广元)如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象已知A,B两点相距8米,探测线与地面的夹角分别是30和45,试确定生命所在点C的深度(结果保留根号)【解答】解:作CDAB交AB的延长线于点D,如右图所示,由已知可得,AB=8米,CBD=45,CAD=30,AD=,BD=,AB=ADBD=,即8=,解得,CD=米,即生命所在点C的深度是米16(2017呼和浩特)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70角,请你用测得的数据求A,B两地的距离AB长(结果用含非特殊角的三角函数和根式表示即可)【解答】解:过点C作CMAB交AB延长线于点M,由题意得:AC=4010=400(米)在直角ACM中,A=30,CM=AC=200米,AM=AC=200米在直角BCM中,tan20=,BM=200tan20,AB=AMBM=200200tan20=200(tan20),因此A,B两地的距离AB长为200(tan20)米17(2017铁岭)如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C的距离相等,测得A=30,D=45,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离(结果保留根号)【解答】解:如图作BHAD于H,CEAB于ECA=CB,CEAB,AE=EB=30,tan30=,CE=10,AC=CB=2CE=20,在RtCBH中,CH=BC=10,BH=CH=30,在RtBHD中,D=45,BH=DH=30,DC=DH+CH=30+10,答:小明、小丽与舞台C的距离分别为20m和(30+10)m18(2017凉山州)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?【解答】解:如图,延长OC,AB交于点PABC=120,PBC=60,OCB=A=90,P=30,AD=20米,OA=AD=10米,BC=2米,在RtCPB中,PC=BCtan60=2米,PB=2BC=4米,P=P,PCB=A=90,PCBPAO,PA=10米,AB=PAPB=(104)米答:路灯的灯柱AB高应该设计为(104)米19(2017江西)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为20,而当手指接触键盘时,肘部形成的“手肘角”约为100图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm请判断此时是否符合科学要求的100?(参考数据:sin69,cos21,tan20,tan43,所有结果精确到个位)【解答】解:(1)RtABC中,tanA=,AB=55(cm);(2)延长FE交DG于点I则DI=DGFH=10072=28(cm)在RtDEI中,sinDEI=,DEI=69,=18069=111100,此时不是符合科学要求的10020(2017赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示已知AC=20cm,BC=18cm,ACB=50,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由(提示:sin500.8,cos500.6,tan501.2)【解答】解:王浩同学能将手机放入卡槽AB内理由:作ADBC于点D,C=50,AC=20cm,AD=ACsin50=200.8=16cm,CD=ACcos50=200.6=12cm,BC=18cm,DB=BCCD=1812=6cm,AB=,17=,王浩同学能将手机放入卡槽AB内21(2017张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像铜像由像体AD和底座CD两部分组成如图,在RtABC中,ABC=70.5,在RtDBC中,DBC=45,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.50.943,cos70.50.334,tan70.52.824)【解答】解:在RtDBC中,DBC=45,且CD=2.3米,BC=2.3m,在RtABC中,ABC=70.5,tan70.5=2.824,解得:AD4.2,答:像体AD的高度约为4.2m22(2017桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中ABCD,AMBNED,AEDE,请根据图中数据,求出线段BE和CD的长(sin370.60,cos370.80,tan370.75,结果保留小数点后一位)【解答】解:BNED,NBD=BDE=37,AEDE,E=90,BE=DEtanBDE18.75(cm),如图,过C作AE的垂线,垂足为F,FCA=CAM=45,AF=FC=25cm,CDAE,四边形CDEF为矩形,CD=EF,AE=AB+EB=35.75(cm),CD=EF=AEAF10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm23(2017贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角CAD=60,求第二次施救时云梯与水平线的夹角BAD的度数(结果精确到1)【解答】解:延长AD交BC所在直线于点E由题意,得BC=17米,AE=15米,CAE=60,AEB=90,在RtACE中,tanCAE=,CE=AEtan60=15米在RtABE中,tanBAE=,BAE71答:第二次施救时云梯与水平线的夹角BAD约为7124(2017岳阳)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,BAC=CDE=30,DE=80cm,AC=165cm(1)求支架CD的长;(2)求真空热水管AB的长(结果保留根号)【解答】解:(1)在RtCDE中,CDE=30,DE=80cm,CD=80cos30=80=40(cm)(2)在RtOAC中,BAC=30,AC=165cm,OC=ACtan30=165=55(cm),OD=OCCD=5540=15(cm),AB=AOOB=AOOD=55215=95(cm)25(2017长春)如图,某商店营业大厅自动扶梯AB的倾斜角为31,AB的长为12米,求大厅两层之间的距离BC的长(结果精确到0.1米)(参考数据:sin31=0.515,cos31=0.857,tan31=0.60)【解答】解:过B作地平面的垂线段BC,垂足为C在RtABC中,ACB=90,BC=ABsinBAC=120.5156.2(米)即大厅两层之间的距离BC的长约为6.2米26(2017贺州)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30,在B处测得探测线与地面的夹角为60,求该生命迹象C处与地面的距离(结果精确到0.1米,参考数据:1.41,1.73)【解答】解:过C点作AB的垂线交AB的延长线于点D,CAD=30,CBD=60,ACB=30,CAB=ACB=30,BC=AB=4米,在RtCDB中,BC=4米,CBD=60,sinCBD=,sin60=,CD=4sin60=4=23.5(米),故该生命迹象所在位置的深度约为3.5米27(2017黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角为60,根据有关部门的规定,39时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin390.63,cos390.78,tan390.81,1.41,1.73,2.24)【解答】解:假设点D移到D的位置时,恰好=39,过点D作DEAC于点E,作DEAC于点E,CD=12米,DCE=60,DE=CDsin60=12=6米,CE=CDcos60=12=6米DEAC,DEAC,DDCE,四边形DEED是矩形,DE=DE=6米DCE=39,CE=12.8,EE=CECE=12.86=6.87(米)答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全28(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,EAC=130,求水坝原来的高度BC(参考数据:sin500.77,cos500.64,tan501.2)【解答】解:设BC=x米,在RtABC中,CAB=180EAC=50,AB=x,在RtEBD中,i=DB:EB=1:1,BD=BE,CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米29(2017威海)图1是太阳能热水器装置的示意图利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角()确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,ABBC,垂足为点B,EAAB,垂足为点A,CDAB,CD=10cm,DE=120cm,FGDE,垂足为点G(1)若=3750,则AB的长约为83.2cm;(参考数据:sin37500.61,cos37500.79,tan37500.78)(2)若FG=30cm,=60,求CF的长【解答】解:(1)如图,作EPBC于点P,作DQEP于点Q,则CD=PQ=10,2+3=90,1+=90,且1=2,3=3750,则EQ=DEsin3=120sin3750,AB=EP=EQ+PQ=120sin3750+10=83.2,故答案为:83.2;(2)如图,延长ED、BC交于点K,由(1)知=3=K=60,在RtCDK中,CK=,在RtKGF中,KF=,则CF=KFKC=30(2017达州)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌当太阳光线与水平线成60角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高(结果不取近似值)【解答】解:如图作MFPQ于F,QEMN于E,则四边形EMFQ是矩形在RtQEN中,设EN=x,则EQ=2x,QN2=EN2+QE2,20=5x2,x0,x=2,EN=2,EQ=MF=4,MN=3,FQ=EM=1,在RtPFM中,PF=FMtan60=4,PQ=PF+FQ=4+131(2017荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:1.41,1.73)【解答】解:过点C作CMAB于M则四边形MEDC是矩形,ME=DC=3CM=ED,在RtAEF中,AFE=60,设EF=x,则AF=2x,AE=x,在RtFCD中,CD=3,CFD=30,DF=3,在RtAMC中,ACM=45,MAC=ACM=45,MA=MC,ED=CM,AM=ED,AM=AEME,ED=EF+DF,x3=x+3,x=6+3,AE=(6+3)=6+9,AB=AEBE=9+6118.4米答:旗杆AB的高度约为18.4米32(2017潍坊)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度该楼底层为车库,高2.5米;上面五层居住,每层高度相等测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60,在B处测得四楼顶部点E的仰角为30,AB=14米求居民楼的高度(精确到0.1米,参考数据:1.73)【解答】解:设每层楼高为x米,由题意得:MC=MCCC=2.51.5=1米,DC=5x+1,EC=4x+1,在RtDCA中,DAC=60,CA=(5x+1),在RtECB中,EBC=30,CB=(4x+1),AB=CBCA=AB,(4x+1)(5x+1)=14,解得:x3.17,则居民楼高为53.17+2.518.4米33(2017通辽)如图,物理教师为同
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 工作总结


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!