资源描述
普宁市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若为等差数列,为其前项和,若,则成立的最大自然数为( )A11 B12 C13 D142 如图,已知正方体ABCDA1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是( )A5B4C4D23 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B4C.D4 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A10 13B12.5 12C12.5 13D10 155 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个6 根据中华人民共和国道路交通安全法规定:车辆驾驶员血液酒精浓度在2080mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车据法制晚报报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A2160B2880C4320D86407 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,则的解析式为( )A BC D【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.8 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A96B48C24D09 已知向量=(1,3),=(x,2),且,则x=( )ABCD10现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A232B252C472D48411直线x2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )ABCD12一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力二、填空题13如图所示,在三棱锥CABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EFAB,则EF与CD所成的角是14在ABC中,点D在边AB上,CDBC,AC=5,CD=5,BD=2AD,则AD的长为15如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为16集合A=x|1x3,B=x|x1,则AB=17在中,已知角的对边分别为,且,则角为 .18【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为_三、解答题19已知函数f(x)=,其中=(2cosx, sin2x),=(cosx,1),xR(1)求函数y=f(x)的单调递增区间;(2)在ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求ABC的面积20在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题答题终止后,获得的总分决定获奖的等次若甲是被抽到的答题同学,且假设甲答对问题的概率分别为()记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;()你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由21(本小题满分12分)已知圆,直线.(1)证明: 无论取什么实数,与圆恒交于两点;(2)求直线被圆截得的弦长最小时的方程.22从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得xi=80, yi=20, xiyi=184, xi2=720(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄23已知an为等比数列,a1=1,a6=243Sn为等差数列bn的前n项和,b1=3,S5=35(1)求an和Bn的通项公式;(2)设Tn=a1b1+a2b2+anbn,求Tn24某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励记奖金为y(单位:万元),销售利润为x(单位:万元)(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?普宁市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】考点:得出数列的性质及前项和【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“,”判断前项和的符号问题是解答的关键 2 【答案】 D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0a4,0b4,P(x,y,4),0 x4,0y4,则F(0,b,4),E(4,a,0),=(x,by,0),点P到点F的距离等于点P到平面ABB1A1的距离,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),|PE|min=2故选:D【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识3 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V23221,故选D.4 【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,中间的一个矩形最高,故10与15的中点是12.5,众数是12.5 而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可中位数是13故选:C【点评】用样本估计总体,是研究统计问题的一个基本思想方法频率分布直方图中小长方形的面积=组距,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型5 【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题6 【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:288000.15=4320故选C7 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图象,再将的图象向上平移3个单位得到函数的图象,因此 .8 【答案】 B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系【专题】计算题;压轴题【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,求安全存放的不同方法的种数首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况然后求出即可得到答案【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48故选B【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖9 【答案】C【解析】解:,3x+2=0,解得x=故选:C【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题10【答案】 C【解析】【专题】排列组合【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有=5601672=472故选C【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题11【答案】A【解析】直线x2y+2=0与坐标轴的交点为(2,0),(0,1),直线x2y+2=0经过椭圆的一个焦点和一个顶点;故故选A【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型12【答案】B 二、填空题13【答案】30 【解析】解:取AD的中点G,连接EG,GF则EGDC=2,GFAB=1,故GEF即为EF与CD所成的角又FEABFEGF在RtEFG中EG=2,GF=1故GEF=30故答案为:30【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了14【答案】5 【解析】解:如图所示:延长BC,过A做AEBC,垂足为E,CDBC,CDAE,CD=5,BD=2AD,解得AE=,在RTACE,CE=,由得BC=2CE=5,在RTBCD中,BD=10,则AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题15【答案】 【解析】解:如图,将AM平移到B1E,NC平移到B1F,则EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=cosEB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题16【答案】x|1x1 【解析】解:A=x|1x3,B=x|x1,AB=x|1x1,故答案为:x|1x1【点评】本题主要考查集合的基本运算,比较基础17【答案】【解析】考点:正弦定理【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是,消去多余的变量,从而解出角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在年全国卷( )中以选择题的压轴题出现.18【答案】【解析】三、解答题19【答案】 【解析】解:(1)f(x)=2cos2x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,令+2k2x+2k,解得+kx+k,函数y=f(x)的单调递增区间是+k, +k,()f(A)=22sin(2A+)+1=2,即sin(2A+)= 又0A,A=a=,由余弦定理得a2=b2+c22bccosA=(b+c)23bc=7 sinB=2sinCb=2c 由得c2=SABC=20【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】()的可能取值为,分布列为:()设先回答问题,再回答问题得分为随机变量,则的可能取值为,分布列为:应先回答所得分的期望值较高21【答案】(1)证明见解析;(2)【解析】试题分析:(1)的方程整理为,列出方程组,得出直线过圆内一点,即可证明;(2)由圆心,当截得弦长最小时, 则,利用直线的点斜式方程,即可求解直线的方程.1111(2)圆心,当截得弦长最小时, 则,由得的方程即. 考点:直线方程;直线与圆的位置关系.22【答案】 【解析】解:(1)由题意,n=10, =xi=8, =yi=2,b=0.3,a=20.38=0.4,y=0.3x0.4;(2)b=0.30,y与x之间是正相关;(3)x=7时,y=0.370.4=1.7(千元)23【答案】 【解析】解:()an为等比数列,a1=1,a6=243,1q5=243,解得q=3,Sn为等差数列bn的前n项和,b1=3,S5=3553+d=35,解得d=2,bn=3+(n1)2=2n+1()Tn=a1b1+a2b2+anbn,得:,整理得:【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用24【答案】 【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,0 x8时,y=0.15x;x8时,y=1.2+log5(2x15)奖金y关于销售利润x的关系式y=(2)由题意知1.2+log5(2x15)=3.2,解得x=20所以,小江的销售利润是20万元【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题第 16 页,共 16 页
展开阅读全文